(A.J.).Linker (H1) histones play critical roles in chromatin compaction in higher eukaryotes. They are also the most variable of the histones, with numerous nonallelic variants cooccurring in the same cell. Plants contain a distinct subclass of minor H1 variants that are induced by drought and abscisic acid and have been implicated in mediating adaptive responses to stress. However, how these variants facilitate adaptation remains poorly understood. Here, we show that the single Arabidopsis (Arabidopsis thaliana) stressinducible variant H1.3 occurs in plants in two separate and most likely autonomous pools: a constitutive guard cell-specific pool and a facultative environmentally controlled pool localized in other tissues. Physiological and transcriptomic analyses of h1.3 null mutants demonstrate that H1.3 is required for both proper stomatal functioning under normal growth conditions and adaptive developmental responses to combined light and water deficiency. Using fluorescence recovery after photobleaching analysis, we show that H1.3 has superfast chromatin dynamics, and in contrast to the main Arabidopsis H1 variants H1.1 and H1.2, it has no stable bound fraction. The results of global occupancy studies demonstrate that, while H1.3 has the same overall binding properties as the main H1 variants, including predominant heterochromatin localization, it differs from them in its preferences for chromatin regions with epigenetic signatures of active and repressed transcription. We also show that H1.3 is required for a substantial part of DNA methylation associated with environmental stress, suggesting that the likely mechanism underlying H1.3 function may be the facilitation of chromatin accessibility by direct competition with the main H1 variants.Linker (H1) histones are conserved and ubiquitous structural components of eukaryotic chromatin required for the stabilization of higher order chromatin structure and are generally thought to restrict DNA accessibility. Interestingly, despite their architectural role, H1 histones were shown to be highly mobile and continuously exchanging among chromatin-binding sites (Raghuram et al., 2009). They are also the most variable of the histones, with numerous nonallelic variants coexisting in the same cell. In vertebrates, several evolutionarily conserved subfamilies of H1 can be distinguished (Talbert et al., 2012) and appear to play both redundant and specific roles during development and cellular differentiation (McBryant et al., 2010). There is accumulating evidence that, in animals, regulation of the proportions of H1 variants with different dynamic behavior in chromatin is involved in controlling the accessibility of DNA to trans-acting factors (Jullien et al., 2010;Shahhoseini et al., 2010;Zhang et al., 2012a;Pérez-Montero et al., 2013;Christophorou et al., 2014).Epigenetic mechanisms, including DNA and histone modifications and active nucleosome remodeling, are major players in translating signals about environmental perturbations into adaptive responses at the transc...
Alzheimer's disease (AD) is the most common cause of dementia and a great socioeconomic burden in the aging society. Compelling evidence demonstrates that molecular change characteristics for AD, such as oxidative stress and amyloid β (Aβ) oligomerization, precede by decades the onset of clinical dementia and that the disease represents a biological and clinical continuum of stages, from asymptomatic to severely impaired. Nevertheless, the sequence of the early molecular alterations and the interplay between them are incompletely understood. This review presents current knowledge about the oxidative stress-induced impairments and compromised oxidative stress defense mechanisms in AD brain and the cross-talk between various pathophysiological insults, with the focus on excessive reactive oxygen species (ROS) generation and Aβ overproduction at the early stages of the disease. Prospects for AD therapies targeting oxidant/antioxidant imbalance are being discussed, as well as for the development of novel oxidative stress-related, blood-based biomarkers for early, noninvasive AD diagnostics.
Alzheimers disease (AD) is the most common age-related dementia. Among its major challenges is identifying molecular signatures characteristic for the early AD stage in patients with Mild Cognitive Impairment (MCI-AD), which could serve for deciphering the AD pathomechanism and also as non-invasive, easy-to-access biomarkers. Using qRT-PCR we compared the microRNA (miRNA) profiles in blood plasma of 15 MCI-AD patients, whose diagnoses were confirmed by cerebrospinal fluid (CSF) biomarkers, with 20 AD patients and 15 non-demented, age-matched individuals (CTR).To minimize methodological variability, we adhered to standardization of blood and CSF assays recommended by the international Joint Programming for Neurodegenerative Diseases (JPND) BIOMARKAPD consortium, and we employed commercially available Exiqon qRT-PCR-assays. In the first screening, we assessed 179 miRNAs of plasma. We confirmed 23 miRNAs reported earlier as AD biomarker candidates in blood and found 26 novel differential miRNAs between AD and control subjects. For representative 15 differential miRNAs, the TargetScan, MirTarBase and KEGG database analysis indicated putative protein targets among such AD hallmarks as MAPT (Tau), proteins involved in amyloidogenic proteolysis, and in apoptosis. These 15 miRNAs were verified in separate, subsequent subject groups. Finally, 6 miRNAs (3 not yet reported in AD context and 3 reported in AD blood) were selected as the most promising biomarker candidates differentiating early AD from controls with the highest fold changes (from 1.32 to 14.72), consistent significance, specificities from 0.78 to 1 and sensitivities from 0.75 to 1. (patent pending, PCT/IB2016/052440).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.