Presented is a study on the original preparation of individual and in situ intimately mixed composite nanocrystalline powders in the titanium nitride-aluminum nitride system, Ti:Al = 1:1 (at.), which were used in high pressure (7.7 GPa) and high temperature (650 and 1200 °C) sintering with no binding additives for diverse individual and composite nanoceramics. First, variations in precursor processing pathways and final nitridation temperatures, 800 and 1100 °C, afforded a pool of mixed in the nanosized regime cubic TiN (c-TiN) and hexagonal AlN (h-AlN) composite nanopowders both with varying average crystallite sizes. Second, the sintering temperatures were selected either to preserve initial powder nanocrystallinity (650 °C was lower than both nitridation temperatures) or promote crystal growth and recrystallization (1200 °C was higher than both nitridation temperatures). Potential equilibration towards bimetallic compounds upon solution mixing of the organometallic precursors to nanopowders, monomeric Ti[N(CH3)2]4 and dimeric {Al[N(CH3)2]3}2, was studied with 1H and 13C NMR in C6D6 solution. The powders and nanoceramics, both of the composites and individual nitrides, were characterized if applicable by powder XRD, FT-IR, SEM/EDX, Vicker’s hardness, and helium density. The Vicker’s hardness tests confirmed many of the composite and individual nanoceramics having high hardnesses comparable with those of the reference h-AlN and c-TiN ceramics. This is despite extended phase segregation and, frequently, closed microsized pore formation linked mainly to the AlN component. No evidence was found for metastable alloying of the two crystallographically different nitrides under the applied synthesis and sintering conditions. The high pressure and high temperature sintering of the individual and in situ synthesis-mixed composite nanopowders of TiN-AlN was demonstrated to yield robust nanoceramics.
High energy ball milling is used to make first the quaternary sulfide Cu2ZnSnS4 raw nanopowders from two different precursor systems. The mechanochemical reactions in this step afford cubic pre-kesterite with defunct semiconducting properties and showing no solid-state 65Cu and 119Sn MAS NMR spectra. In the second step, each of the milled raw materials is annealed at 500 and 550 °C under argon to result in tetragonal kesterite nanopowders with the anticipated UV-Vis-determined energy band gap and qualitatively correct NMR characteristics. The magnetic properties of all materials are measured with SQUID magnetometer and confirm the pre-kesterite samples to show typical paramagnetism with a weak ferromagnetic component whereas all the kesterite samples to exhibit only paramagnetism of relatively decreased magnitude. Upon conditioning in ambient air for 3 months, a pronounced increase of paramagnetism is observed in all materials. Correlations between the magnetic and spectroscopic properties of the nanopowders including impact of oxidation are discussed. The magnetic measurements coupled with NMR spectroscopy appear to be indispensable for comprehensive kesterite evaluation.
Presented is a study on the preparation, via original precursor solution chemistry, of intimately mixed composite nanocrystalline powders in the system gallium nitride GaN–titanium nitride TiN, atomic ratio Ga/Ti = 1/1, which were subjected to high-pressure (7.7 GPa) and high-temperature (650, 1000, and 1200 °C) sintering with no additives. Potential equilibration toward bimetallic compounds upon mixing of the solutions of the metal dimethylamide precursors, dimeric {Ga[N(CH3)2]3}2 and monomeric Ti[N(CH3)2]4, was studied with 1H- and 13C{H}-NMR spectroscopy in C6D6 solution. The different nitridation temperatures of 800 and 950 °C afforded a pool of in situ synthesis-mixed composite nanopowders of hexagonal h-GaN and cubic c-TiN with varying average crystallite sizes. The applied sintering temperatures were either to prevent temperature-induced recrystallization (650 °C) or promote crystal growth (1000 and 1200 °C) of the initial powders with the high sintering pressure of 7.7 GPa having a detrimental effect on crystal growth. The powders and nanoceramics, both of the composites and of the individual nitrides, were characterized if applicable by powder XRD, SEM/EDX, Raman spectroscopy, Vicker’s hardness, and helium density. No evidence was found for metastable alloying of the two crystallographically different nitrides under the applied synthesis and sintering conditions, while the nitride domain segregation on the micrometer scale was observed on sintering. The Vicker’s hardness tests for many of the composite and individual nanoceramics provided values with high hardness comparable with those of the individual h-GaN and c-TiN ceramics.
We explore the important aspects of adventitious oxygen presence in nanopowders, as well as in the high-pressure and high-temperature-sintered nanoceramics of semiconductor kesterite Cu2ZnSnS4. The initial nanopowders were prepared via the mechanochemical synthesis route from two precursor systems, i.e., (i) a mixture of the constituent elements (Cu, Zn, Sn, and S), (ii) a mixture of the respective metal sulfides (Cu2S, ZnS, and SnS), and sulfur (S). They were made in each system in the form of both the raw powder of non-semiconducting cubic zincblende-type prekesterite and, after thermal treatment at 500 °C, of semiconductor tetragonal kesterite. Upon characterization, the nanopowders were subjected to high-pressure (HP) (7.7 GPa) and high-temperature (HT) (500 °C) sintering that afforded mechanically stable black pellets. Both the nanopowders and pellets were extensively characterized, employing such determinations as powder XRD, UV-Vis/FT-IR/Raman spectroscopies, solid-state 65Cu/119Sn NMR, TGA/DTA/MS, directly analyzed oxygen (O) and hydrogen (H) contents, helium density, and Vicker’s hardness (when applicable). The major findings are the unexpectedly high oxygen contents in the starting nanopowders, which are further revealed in the sintered pellets as crystalline SnO2. Additionally, the pressure–temperature–time conditions of the HP/HT sintering of the nanopowders are shown (in the relevant cases) to result in the conversion of the tetragonal kesterite into cubic zincblende polytype upon decompression.
A study is presented on the synthesis of reaction-mixed nitride nanopowders in the reference system of aluminium nitride AlN, gallium nitride GaN, and titanium nitride TiN (Al:Ga:Ti = 1:1:1) followed by their high-pressure and high-temperature sintering towards novel multi-nitride composite nanoceramics. The synthesis starts with a 4 h reflux in hexane of the mixture of the respective metal dimethylamides, which is followed by hexane evacuation, and reactions of the residue in liquid ammonia at −33 °C to afford a mixed metal amide/imide precursor. Plausible equilibration towards a bimetallic Al/Ga-dimethylamide compound upon mixing of the solutions of the individual metal-dimethylamide precursors containing dimeric {Al[N(CH3)2]3}2 and dimeric {Ga[N(CH3)2]3}2 is confirmed by 1H- and 13C{H}-NMR spectroscopy in C6D6 solution. The precursor is pyrolyzed under ammonia at 800 and 950 °C yielding, respectively, two different reaction-mixed composite nitride nanopowders. The latter are subjected to no-additive high-pressure and high-temperature sintering under conditions either conservative for the initial powder nanocrystallinity (650 °C, 7.7 GPa) or promoting crystal growth/recrystallization and, possibly, solid solution formation via reactions of AlN and GaN towards Al0.5Ga0.5N (1000 and 1100 °C, 7.7 GPa). The sintered composite pellets show moderately high mechanical hardness as determined by the Vicker’s method. The starting nanopowders and resulting nanoceramics are characterized by powder XRD, Raman spectroscopy, and SEM/EDX. It is demonstrated that, in addition to the multi-nitride composite nanoceramics of hexagonal AlN/hexagonal GaN/cubic TiN, under specific conditions the novel composite nanoceramics made of hexagonal Al0.5Ga0.5N and cubic TiN can be prepared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.