The effect of chronic exposure to cadmium (Cd) on the mechanical properties of femoral diaphysis and femoral neck was investigated on a rat model of human exposure. Three-week-old female Wistar rats were exposed to Cd in drinking water at concentrations of 1, 5, 50, or 100 mg/L for 12 months. Biomechanical properties of the femoral diaphysis were evaluated in a three-point bending test and those of the femoral neck in a bending test with vertical loading of the head. Bone mineral content (BMC) and bone mineral density (BMD) at the whole femur, and BMD at the diaphysis and proximal femur (head and neck region) of the Cd-treated rats decreased in a dose-dependent manner, except for the diaphyseal BMD at a Cd concentration of 1 mg/L. Exposure to Cd concentrations of 1 and 5 mg/L had only little effect on the diaphyseal mechanical properties (decreased yield load with unchanged bending strength, stiffness, yield stress, ultimate stress, and Young modulus), whereas the bending strength and stiffness of the neck decreased and the yield load clearly tended to decline or declined. The effect of Cd at the two locations was more marked in the 50 and 100 mg/L groups, and changes in the bone geometry were observed in these animals. The results clearly revealed that chronic, even low-level, exposure to Cd results in demineralization and weakening of the femur. The femoral neck seems to be more vulnerable than the diaphysis to failure from Cd. We conclude that environmental exposure to Cd may be an important risk factor for femoral neck fracture.
Cereal Chem. 75(3):338-345A response surface analysis using a second-order central composite design was used to study the effect of extrusion process parameters on the extrudate quality of three blends containing buckwheat flour. The extrudates were prepared as three blends. Blend 1 was a 55:40:5 (w/w) mix of light buckwheat flour, wheat flour, and nonfat dry milk (NFDM). Blend 2 was a 40:55:5 mix of light buckwheat flour, corn meal, and NFDM. Blend 3 was a 30:60:10 mix of light buckwheat flour, corn meal, and NFDM. The blends were processed in a twin-screw extruder with factorial combinations of the parameters including: process temperatures of 95-150°C, dough moisture of 15-22%, and screw speeds of 260-390 rpm. The linear components alone significantly explained most of the variation of expansion index, bulk density, water absorption, and break-ing strength. The greatest amount of variability was explained by process temperature for blend 1. Dough moisture accounted for the greatest amount of variation for blends 2 and 3. Maximum predicted expansion index values and high water absorption percentages were obtained at low dough moisture levels. Dough moisture and process temperatures were the most important factors predicting bulk density. Sensory evaluation of texture, color, flavor, and general acceptability scores of selected samples ranked blend 3 > blend 2 > blend 1. The in vitro protein digestibility values ranked blend 1 > blend 2 > blend 3. An increase of up to 9.5% units in the protein digestibility values was observed when compared to the nonextruded raw blends.
In Poland bread as a staple food both made from wheat and rye flour can be a potential product for future fortification with folic acid. The objective of the study was to examine the effect of fermentation and baking on added folic acid and some endogenous folates stability during breadmaking of rye and wheat breads. Breads were produced using the formulation containing enriched flour with 0.2 mg folic acid/100 g product, baker's yeast and additionally ascorbic acid for wheat bread and lactic acid for rye bread. Folates were extracted with Hepes/Ches buffer (pH = 7.85) followed by destruction of matrix by amylase and protease and deconjugation with rat serum conjugase. Affinity chromatography (FBP bovine milk) was used to purify and concentrate samples. The folates were separated by HPLC with C18 column and with a combination of fluorescence and UV detection. For both rye and wheat breads there was a decrease of folic acid from flour to bread stage. The total losses depend on baking process and ranged from 12 to 21%. Some changes in the level of different native folate forms during the stage of baking process were also observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.