Standard test methods may not be suitable or sufficient for determining the geotechnical conditions of a structure’s subsoil and the effects of the designed structures on the environment. Geophysical test methods, validated with other methods, may prove useful. In recent years they have found many new applications in engineering practice, both geotechnical and environmental. The advantages of geophysical methods include the non-destructive and non-invasive nature of the tests, their low costs and quick results, as well as compatibility with different materials, including soils, solid rocks, wastes and anthropogenic formations. The paper presents the analysis of laboratory and field investigations including research in a modified oedometer, resistivity chamber, electrical resistivity tomography (ERT) and resistivity cone penetration test (RCPT). Laboratory tests allowed for the assessment of the degree of saturation and porosity of sandy and clayey soils. The tests were carried out on saturated and unsaturated soil samples and allowed for the determination of some relationships between electrical conductivity and porosity. The proposed equations were used to assess parameters in in situ studies using RCPT tests and showed good agreement with reference values based on undisturbed soil samples. ERT tests confirmed the usefulness of electrical measurements in the quality assurance of subsoil and hydrotechnical structures. The tests showed weakening zones in the levee body, discontinuity of the vertical sealing system on the modernized section of the embankment, and location of the top of clay deposits.
Small strain stiffness in overconsolidated Pliocene clays. A huge development of technical infrastructure, including the construction of many high-rise buildings, roads, railroads and extension of subway lines, took place over the recent years in Poland. Therefore, numerous planned investment projects require geotechnical data documenting the variation of soil parameters found in the subsoil. The shear wave velocity is one of the most important input parameters to represent the stiffness of the soil deposits. This paper focuses on the methods and devices using measurements of the shear wave velocity to estimate the initial shear modulus in cohesive soil. It is preferable to measure VS by in situ wave propagation tests, however it is often economically not feasible in all regions of Poland. Hence, a reliable correlation between shear wave velocity and parameters measured in triaxial cell or static penetration parameters would be a considerable advantage. This study shows results obtained from the bender elements tests and field techniques - seismic cone penetration test and seismic flat dilatometer, performed on overconsolidated cohesive soils in Warsaw. On the basis of the test results possible correlations between shear wave velocity (initial shear modulus), mean effective stress and void ratio are considered and four original empirical relationships are proposed. Moreover, the proposed formulas by two different techniques using triaxial apparatus and also RCPT cone were examined. The proposed formulas show a reasonable agreement with direct shear wave velocity profiles for clays and might be incorporated into routine laboratory and field practice
Reducing the discharge of contaminants present in runoff water is important for a clean environment. This paper analyses field test results of three pilot-scale horizontal runoff water treatment zones filled with mixtures of zero valent iron (ZVI), activated carbon (AC), silica spongolite (SS), zeolite (Z), and limestone (LS). The investigated systems were (S1) ZVI/AC/SS, (S2) ZVI/AC/Z and (S3) ZVI/AC/LS. The efficiency of the three systems in the removal of Cd, Cu, Ni, Pb, Zn, COD and ammonium ions from runoff water was compared and the factors (temperature, pH, redox potential, hydraulic conductivity) and relationships affecting treatment effectiveness were determined. A statistical analysis of effluent contaminant concentrations and physicochemical parameters of effluent solutions included descriptive statistics, analysis of variance (ANOVA), a multidimensional analysis using a Principal Component Analysis (PCA), a factor analysis (FA) and a cluster analysis (CA). The ANOVA and cluster analyses indicated similarities between systems containing SS and LS. As a consequence, using cheaper SS can reduce investment costs. In addition, there were no significant differences between the three systems regarding Cd and Ni removal, while Cu and Pb were removed to almost 100%. The results indicate that all the tested materials supported ZVI and AC in the removal of heavy metals in a similar way. However, runoff water was enriched with nitrogen oxides and sulfates while flowing through treatment zones with SS and LS. The enrichment increased with increasing temperature and redox potential. The conducted analyses indicate that the most suitable mixture is ZVI/AC/Z. It should be emphasized that the ongoing processes (precipitation and ZVI corrosion) reduced the hydraulic conductivity of the filters up to two orders of magnitude. Expansive iron corrosion was the most limiting factor in ZVI filtration systems. In the future, applications decreasing the percentage of ZVI in the mixture are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.