This work describes the interaction between femtosecond laser pulses (~130 fs, 800 nm) and gold nanorods (NRs) leading to reshaping of the NRs. We focus on the investigation of structural changes of the NRs and the parameters influencing the reshaping, like surface modification using sodium sulphide, laser power and the position of the longitudinal surface plasmon resonance band (l-SPR) with respect to the laser wavelength. A thermogravimetric analysis experiment is performed to examine changes in the composition of NRs upon heating. A new type of banana-shaped NPs is described and the conditions of their appearance are discussed.
The synthesis and characterization of four new tetracyanobutadiene (TCBD) derivatives (1-3 and 2') incorporating 2- or 2,7-fluorenyl and diphenylamino moieties are reported. The electroactivity of 1-3 and 2' was studied by cyclic voltammetry (CV), while the linear optical and (third-order) nonlinear optical (NLO) properties were investigated by electronic spectroscopy and Z-scan studies, respectively. All experimental investigations were rationalized by DFT computations, providing an insight into the electronic structure of these derivatives and on their application potential. We show that these derivatives are nonluminescent in solution at ambient temperatures, but become fluorescent in solvent glasses. This finding constitutes an unprecedented observation for TCBD derivatives. Also, we show by Z-scan studies that these derivatives behave as two-photon absorbers in the near-IR range (800-1050 nm). These third-order NLO properties are discussed and compared with those of their alkynyl precursors (4-6), which have been investigated by two-photon excited fluorescence (TPEF).
Bacterial infection and the growth of antibiotic resistance is a serious problem that leads to patient suffering, death and increased costs of healthcare. To address this problem, we propose using flexible organic light-emitting diodes (OLEDs) as light sources for photodynamic therapy (PDT) to kill bacteria. PDT involves the use of light and a photosensitizer to generate reactive oxygen species that kill neighbouring cells. We have developed flexible top-emitting OLEDs with the ability to tune the emission peak from 669 to 737 nm to match the photosensitizer, together with high irradiance, low driving voltage, long operational lifetime and adequate shelf-life. These features enable OLEDs to be the ideal candidate for ambulatory PDT light sources. A detailed study of OLED-PDT for killing Staphylococcus aureus was performed. The results show that our OLEDs in combination with the photosensitizer methylene blue, can kill more than 99% of bacteria. This indicates a huge potential for using OLEDs to treat bacterial infections.
The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.