Peroxiredoxin 5 is a distinct isoform of the peroxiredoxin gene family. The antioxidative and antiapoptotic functions of peroxiredoxin 5 have been extensively demonstrated in cell culture experiments. In the present paper, we provide the first functional analysis of peroxiredoxin 5 in a multicellular organism, Drosophila melanogaster. Similar to its mammalian, yeast or human counterparts, dPrx5 (Drosophila peroxiredoxin 5) is expressed in several cellular compartments, including the cytosol, nucleus and the mitochondrion. Global overexpression of dPrx5 in flies increased resistance to oxidative stress and extended their life span by up to 30% under normal conditions. The dprx5 −/− null flies were comparatively more susceptible to oxidative stress, had higher incidence of apoptosis, and a shortened life span. TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) analysis revealed that the dprx5 −/− null mutant had discernible tissue-specific apoptotic patterns, similar to those observed in control flies exposed to paraquat. In addition, apoptosis was particularly notable in oenocytes. During development the dPrx5 levels co-varied with ecdysone pulses, suggesting inter-relationship between ecdystreroids and dPrx5 expression. The importance of dPrx5 for development was further underscored by the embryonic lethal phenotype of progeny derived from the dprx5 −/− null mutant. Results from the present study suggest that the antioxidant and anti-apoptotic activities of dPrx5 play a critical role in development and aging of the fly.
Drosophila mitochondria contain two peroxidases, peroxiredoxin 3 (dPrx3) and peroxiredoxin 5 (dPrx5), which together constitute the sole known intra-mitochondrial mechanism for the catalytic removal of hydrogen-and organic-peroxides. dPrx3 exists exclusively within mitochondria, whereas dPrx5 is also present in some other intracellular compartments. Levels of these two peroxiredoxins were genetically manipulated, singly and together, in D. melanogaster, for the purpose of understanding their respective functions. Under-expression of dPrx3 by 90–95% had no discernable effect on life span under normal or oxidative stress conditions; the dPrx5 null flies were previously reported to exhibit a 10% shortening of mean life span and an increase in sensitivity to oxidative stress. Flies under-expressing both dPrx3 and dPrx5 showed an 80% decrease in life span, severe disruption in thiol homeostasis and a massive induction of apoptosis in the muscle and digestive system tissues. The early mortality in flies, under-expressing both peroxiredoxins, was partially offset by over-expression of thioredoxin reductase but not mitochondrion-targeted catalase. These results suggest that mitochondrial peroxiredoxins confer specific protection for thioredoxin/glutathione systems, play a critical role in the maintenance of global thiol homeostasis, prevent the age-associated apoptosis and premature death.
Peroxiredoxin 4 (Prx4) has been implicated in a wide variety of biological processes, including development, progression of cancer, inflammation, and antioxidant function. The purpose of this study was to provide further insight into its multiple roles at the whole-animal level, using Drosophila. Reduced expression of dPrx4 (up to 90%) resulted in greater sensitivity to oxidative stress, an elevated H₂O₂ flux, and increases in lipid peroxidation, but no effect on longevity. Overexpression at low levels (<2-fold) gave reduced levels of oxidative damage and tended to show an increase in longevity. Flies expressing dPrx4 globally at high levels (>5-fold) had a dramatically reduced life span (by 20-80%) and increased apoptosis. Analysis of these overexpressors revealed an aberrant redistribution of the dPrx4 protein from the endoplasmic reticulum (ER) to cytosol and hemolymph. In addition to the known proapoptotic effects of the cytosolic form of dPrx4, dPrx4 overexpression triggered an NF-κB-mediated proinflammatory response, similar to that observed in cells under ER stress or when microbially challenged. Finally, we provide the first evidence that dPrx4, on secretion into the hemolymph, elicits a JAK/STAT-mediated response. The effects on fly survival and homeostasis appear to represent a combination of differential effects dictated in large part by dPrx4 subcellular and tissue-specific localization.
Repeat sequences, especially mobile elements, make up large portions of most eukaryotic genomes and provide enormous, albeit commonly underappreciated, evolutionary potential. We analyzed repeatomes of Drosophila melanogaster that have been diverging in response to a microclimate contrast in Evolution Canyon (Mount Carmel, Israel), a natural evolutionary laboratory with two abutting slopes at an average distance of only 200 m, which pose a constant ecological challenge to their local biotas. Flies inhabiting the colder and more humid north-facing slope carried about 6% more transposable elements than those from the hot and dry south-facing slope, in parallel to a suite of other genetic and phenotypic differences between the two populations. Nearly 50% of all mobile element insertions were slope unique, with many of them disrupting coding sequences of genes critical for cognition, olfaction, and thermotolerance, consistent with the observed patterns of thermotolerance differences and assortative mating. adaptive evolution | genome sequencing | microsatellite | incipient speciation
Background Peroxiredoxins are redox-sensing enzymes with multiple cellular functions. Previously, we reported on the potent antioxidant function of Drosophila peroxiredoxin 5 (dPrx5). Studies with mammalian and human cells suggest that peroxiredoxins can modulate immune-related signaling. Methods Survivorship studies and bacteriological analysis were used to determine resistance of flies to fungal and bacterial infections. RT-PCR and immunoblot analyses determined expression of dPrx5 and immunity factors in response to bacterial challenge. Double mutants for dprx5 gene and genes comprising the Imd/Relish and dTak1/Basket branches of the immune signaling pathways were used in epistatic analysis. Results The dprx5 mutant flies were more resistant to bacterial infection than controls, while flies overexpressing dPrx5 were more susceptible. The enhanced resistance to bacteria was accompanied by rapid induction of the Imd-dependent antimicrobial peptides, phosphorylation of the JNK kinase Basket and altered transcriptional profiling of the transient response genes, puckered, ets21C and relish, while the opposite effects were observed in flies over-expressing dPrx5. Epistatic analysis of double mutants, using attacin D and Puckered as read outs of activation of the Imd and JNK pathways, implicated dPrx5 function in the control of the dTak1-JNK arm of immune signaling. Conclusions Differential effects on fly survivorship suggested a trade-off between the antioxidant and immune functions of dPrx5. Molecular and epistatic analyses identified dPrx5 as a negative regulator in the dTak1-JNK arm of immune signaling. General significance Our findings suggest that peroxiredoxins play an important modulatory role in the Drosophila immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.