Mutations of the human cationic trypsinogen gene (PRSS1) are frequently found in association with hereditary pancreatitis. The most frequent variants p.N29I and p.R122H are recognized as disease-causing mutations. Three pseudogene paralogs in the human trypsinogen family, including trypsinogen 6 (PRSS3P2), carry sequence variations in exon 3 which mimic the p.R122H mutation. In routine genetic testing of patients with chronic pancreatitis we identified in two unrelated individuals similar gene conversion events of 24–71 nucleotides length between exon 3 of the PRSS1 (acceptor) and PRSS3P2 (donor) genes. The converted allele resulted in three non-synonymous alterations c.343T>A (p.S115T), c.347G>C (p.R116P) and c.365_366delinsAT (p.R122H). Functional analysis of the conversion triple mutant revealed markedly increased autoactivation resulting in high and sustained trypsin activity in the presence of chymotrypsin C. This activation phenotype was identical to that of the p.R122H mutant. In addition, cellular secretion of the triple mutant from transfected HEK 293T cells was increased about two-fold and this effect was attributable to mutation p.R116P. Our observations confirm and extend the notion that recombination events between members of the trypsinogen family can generate high risk PRSS1 alleles. The pathogenic phenotype of the novel conversion is explained by a unique combination of increased trypsinogen activation and secretion.
Epidermolysis bullosa simplex (EBS) is a hereditary genodermatosis characterised by trauma-induced intraepidermal blistering of the skin. EBS is mostly caused by mutations in the KRT5 and KRT14 genes. Disease severity partially depends on the affected keratin type and may be modulated by mutation type and location. The aim of our study was to identify the molecular defects in KRT5 and KRT14 in a cohort of 46 Polish and one Belarusian probands with clinical suspicion of EBS and to determine the genotype–phenotype correlation. The group of 47 patients with clinical recognition of EBS was enrolled in the study. We analysed all coding exons of KRT5 and KRT14 using Sanger sequencing. The pathogenic status of novel variants was evaluated using bioinformatical tools, control group analysis (DNA from 100 healthy population-matched subjects) and probands’ parents testing. We identified mutations in 80 % of patients and found 29 different mutations, 11 of which were novel and six were found in more than one family. All novel mutations were ascertained as pathogenic. In the majority of cases, the most severe genotype was associated with mutations in highly conserved regions. In some cases, different inheritance mode and clinical significance, than previously reported by others, was observed. We report 11 novel variants and show novel genotype–phenotype correlations. Our data give further insight into the natural history of EBS molecular pathology, epidemiology and mutation origin.
KBG syndrome is a neurodevelopmental autosomal dominant disorder characterized by short stature, macrodontia, developmental delay, behavioral problems, speech delay and delayed closing of fontanels. Most patients with KBG syndrome are found to have a mutation in the ANKRD11 gene or a chromosomal rearrangement involving this gene. We hereby present clinical evaluations of 23 patients aged 4 months to 26 years manifesting clinical features of KBG syndrome. Mutation analysis in the patients was performed using panel or exome sequencing and array CGH. Besides possessing dysmorphic features typical of the KBG syndrome, nearly all patients had psychomotor hyperactivity (86%), 81% had delayed speech, 61% had poor weight gain, 56% had delayed closure of fontanel and 56% had a hoarse voice. Macrodontia and a height range of −1 SDs to −2 SDs were noted in about half of the patients; only two patients presented with short stature below −3 SDs. The fact that wide, delayed closing fontanels were observed in more than half of our patients with KBG syndrome confirms the role of the ANKRD11 gene in skull formation and suture fusion. This clinical feature could be key to the diagnosis of KBG syndrome, especially in young children. Hoarse voice is a previously undescribed phenotype of KBG syndrome and could further reinforce clinical diagnosis.
Connexins belong to the family of gap junction proteins which enable direct cell-to-cell communication by forming channels in adjacent cells. Mutations in connexin genes cause a variety of human diseases and, in a few cases, result in skin disorders. There are significant differences in the clinical picture of two rare autosomal dominant syndromes: keratitis–ichthyosis–deafness (KID) syndrome and hidrotic ectodermal dysplasia (Clouston syndrome), which are caused by GJB2 and GJB6 mutations, respectively. This is despite the fact that, in both cases, malfunctioning of the same family proteins and some overlapping clinical features (nail dystrophy, hair loss, and palmoplantar keratoderma) is observed. KID syndrome is characterized by progressive vascularizing keratitis, ichthyosiform erythrokeratoderma, and neurosensory hearing loss, whereas Clouston syndrome is characterized by nail dystrophy, hypotrichosis, and palmoplantar keratoderma. The present paper presents a Polish patient with sporadic KID syndrome caused by the mutation of p.Asp50Asn in GJB2. The patient encountered difficulties in obtaining a correct diagnosis. The other case presented is that of a family with Clouston syndrome (caused by p.Gly11Arg mutation in GJB6), who are the first reported patients of Polish origin suffering from this disorder. Phenotype diversity among patients with the same genotypes reported to date is also summarized. The conclusion is that proper diagnosis of these syndromes is still challenging and should always be followed by molecular verification.
Hailey-Hailey disease (HHD) is a rare, late-onset autosomal dominant genodermatosis characterized by blisters, vesicular lesions, crusted erosions, and erythematous scaly plaques predominantly in intertriginous regions. HHD is caused by ATP2C1 mutations. About 180 distinct mutations have been identified so far; however, data of only few cases from Central Europe are available. The aim was to analyze the ATP2C1 gene in a cohort of Polish HHD patients. A group of 18 patients was enrolled in the study based on specific clinical symptoms. Mutations were detected using Sanger or next generation sequencing. In silico analysis was performed by prediction algorisms and dynamic structural modeling. In two cases, mRNA analysis was performed to confirm aberrant splicing. We detected 13 different mutations, including 8 novel, 2 recurrent (p.Gly850Ter and c.325-3 T > G), and 6 sporadic (c.423-1G > T, c.899 + 1G > A, p.Leu539Pro, p.Thr808TyrfsTer16, p.Gln855Arg and a complex allele: c.[1610C > G;1741 + 3A > G]). In silico analysis shows that all novel missense variants are pathogenic or likely pathogenic. We confirmed pathogenic status for two novel variants c.325-3 T > G and c.[1610C > G;1741 + 3A > G] by mRNA analysis. Our results broaden the knowledge about genetic heterogeneity in Central European patients with ATP2C1 mutations and also give further evidence that careful and multifactorial evaluation of variant pathogenicity status is essential. Keywords Hailey-Hailey disease. ATP2C1. Genodermatosis The data that support the findings of this study are available from the corresponding author upon reasonable request.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.