The synthesis of monodisperse, surfactant‐free, Ni‐substituted ZnO nanocrystallites (ZnO:Ni) by the mild solvolysis of heterobimetallic Ni4−xZnxO4 cubane‐like precursors (x=1–3) in benzylamine is reported. Ni4−xZnxO4 was grafted by electrophoretic deposition onto fluorine‐doped tin oxide glass substrates and used as an active and stable working electrode for water oxidation. Upon the application of a voltage at the electrodes, the ZnO:Ni precatalyst leads to an active composite material that can oxidize water (>15 h) with an increasing catalytic current. In contrast, the performance of homometallic NiO reference materials decreases rapidly over time and is surpassed by the composite from the ZnO:Ni precatalyst in terms of both stability and activity. Extensive characterization of the as‐prepared and activated ZnO:Ni precatalyst by using hard X‐ray photoelectron spectroscopy revealed that the excellent performance of the electrode material is because of the formation of a unique self‐supported turbostratically disordered mixture of γ‐NiOOH/α‐Ni(OH)2‐like phases from the rapid dissolution of ZnII in the ZnO:Ni precatalyst into the electrolyte during activation.
Organic solvents with varied electrophoretic mobility have been employed for deposition of nanocrystalline ZnO:Co particles onto fluorinated tin oxide supports. Evaluation of the electrochemical activity for the oxygen evolution reaction proves a clear solvent-dependence with highest activity upon deposition from acetonitrile and lowest activity upon deposition from ethanol. Analysis of the resulting layer thickness and density attributes the improved electrochemical activity of acetonitrile-prepared samples to larger film thicknesses with lower film densities, i.e. to films with higher porosity. The findings suggest that the ZnO:Co films represent an initially nanocrystalline system where the catalytic activity is predominantly confined to a thin surface region rather than to comprise the entire volume. Closer inspection of this surface region proves successive in operando transformation of the nanocrystalline to an amorphous phase during evolution of oxygen. Furthermore, less active but highly transparent ZnO:Co phases, prepared from ethanol-containing suspensions, can be successfully employed in a stacking configuration with a low-cost triple-junction solar cell. Thereby, a solar-to-hydrogen efficiency of 5.0% in splitting of water at pH 14 could be realized. In contrast, highly light-absorbing acetonitrile/acetone-prepared samples limit the efficiency to about 1%, demonstrating thus the decisive influence of the used organic solvent upon electrophoretic deposition. Stability investigations over several days finally prove that the modular architecture, applied here, represents an attractive approach for coupling of highly active electrocatalysts with efficient photovoltaic devices.
Correction for ‘Optimized immobilization of ZnO:Co electrocatalysts realizes 5% efficiency in photo-assisted splitting of water’ by Anahita Azarpira et al., J. Mater. Chem. A, 2016, DOI: 10.1039/c5ta07329d.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.