BackgroundAge-related macular degeneration (AMD) is a major cause of blindness worldwide. Circulating microRNAs (miRNAs) in serum have emerged as novel candidate biomarkers for many diseases. The aim of the present study was to identify a serum microRNA (miRNA) expression profile specific for dry and wet forms of AMD.Material/MethodsSerum miRNA expression was first screened using TaqMan® Human MicroRNA Array A (Applied Biosystems). An extensive, self-validated, individual, quantitative RT-PCR (qRT-PCR) study was then performed on a cohort of 300 AMD patients (150 wet form and 150 dry form) and 200 controls. The Mann-Whitney U test and nonparametric Spearman’s rank correlation coefficient were used for statistical analysis.ResultsmiRNA expression analysis revealed increased expression of miR661 and miR3121 in serum of patients with dry AMD and miR4258, miR889, and Let7 in patients with wet form. Expression of analyzed miRNA was not observed or remained at low level in controls.ConclusionsDifferences in miRNA serum profile exist between patients with wet and dry form of AMD, which indicates miRNAs as potential biomarkers of AMD. Further studies should be performed to confirm its significance in clinical practice.
Bcl I in the promoter polymorphism observed within h-GR/NR3C1 gene may play an important role in the development of bronchial asthma and resistance to GCs in the severe bronchial asthma. The aim of the investigation was to study the correlation between this h-GR/NR3C1 gene polymorphism and occurrence of asthma in the population of Polish asthmatics. Peripheral blood was obtained from 70 healthy volunteers and 59 asthma patients. Structuralized anamnesis, spirometry and allergy skin prick tests were performed in all participants. Genotyping was carried out with PCR–RFLP method. In healthy, non-atopic population variants of Bcl I: GG, GC, CC were found with frequency 0.129/0.471/0.400, respectively. In asthma patients Bcl I: GG, GC, CC occurred with respective frequencies of 0.410/0.462/0.128. Chi-square analysis revealed a significantly different (P < 0.05) distribution between cases and controls for the Bcl I polymorphism. The Bcl I polymorphism of h-GR/NR3C1 gene is significantly associated with bronchial asthma, susceptibility to the development of severe form and resistance to GCs in Polish population.
To develop a more potent antithrombin agent with thrombolytic and antiplatelet properties, a new staphylokinase (SAK) variant was constructed. The kringle 2 domain (K2) of tissue type-plasminogen activator (t-PA) containing a fibrin-specific binding site (i), the RGD sequence (Arg-Gly-Asp) for the prevention of platelet aggregation (ii) and the antithrombotic agent - hirulog (iii) was assembled to the C-terminal part of recombinant staphylokinase (r-SAK). cDNA for the hybrid protein SAK-RGD-K2-Hirul was cloned into Pichia pastoris pPIC9K yeast expression vector. The introduction of K2 t-PA, the RGD sequence and hirulog into the C-terminus of r-SAK did not alter the staphylokinase activity. We observed a higher clot lysis potency of SAK-RGD-K2-Hirul as evidenced by a faster and more profound lysis of (125)I-labeled human fibrin clots. The potency of thrombin inhibition by the hirulog C-terminal part of the recombinant fusion protein was almost identical to that of r-Hir alone. These results suggest that the SAK-RGD-K2-Hirul construct can be a more potent and faster-acting thrombolytic agent with better antithrombin and antiplatelet properties compared to r-SAK and SAK-RGD-K2-Hir.
In this study we examined the effects of exogenous nitric oxide (sodium nitroprusside, SNP) and hydrogen peroxide (H2O2) on the expression level of tissue-type plasminogen activator (t-PA), urokinase-type plasminogen activator (u-PA), urokinase-type plasminogen activator receptor (u-PAR), and plasminogen activator inhibitor type 1 (PAI-1) in human umbilical vein endothelial cells (HUVEC). The expression of selected genes involved in fibrynolysis under the influence of oxidative stress was analyzed at the levels of mRNA, protein, and promoter activity. The results of the conducted studies revealed that oxidative stress in endothelial cells causes a significant increase in PAI-1 and u-PAR expression and a moderate increase in t-PA and u-PA expression at all of the investigated levels. We attempted to elucidate the molecular signaling mechanisms by which SNP and H2O2 regulate expression of the respective fibrinolytic factors. Therefore, we tested the protein levels of AP-1, NF-kappaB, and HIF-1 and their DNA-binding activity in endothelial cells subjected to oxidative stress. We found strong correlation between AP-1, NF-kappaB, and HIF-1 in the contribution of regulation of selected genes. In addition, we also found that the inhibition of PAI-1 synthesis by antisense oligonucleotide to PAI-1 mRNA results in markedly increased u-PAR expression and that NF-kappaB and AP-1 are involved in this regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.