The orexinergic system of the lateral hypothalamus plays a crucial role in maintaining wakefulness and mediating arousal in a circadian time-dependent manner. Due to the extensive connections of orexinergic neurons, both orexins (OXA and OXB) exert mainly excitatory effects upon remote brain areas, including the thalamus. The dorsal lateral geniculate nucleus (DLG) is a relay thalamic centre for the visual system. Its thalamo-cortical (TC) neurons convey photic information from the retina to the primary visual cortex. The present study shows that orexins are powerful modulators of neuronal activity in the DLG. OXA directly depolarised the majority of neurons tested, acting predominately on postsynaptic OX2 receptors. Moreover, OXA was found to increase excitability and enhance neuronal responses to both glutamate and γ-aminobutyric acid (GABA). Mechanistic studies showed the involvement of voltage-gated calcium currents and GIRK channels in the observed depolarisations. Immunohistochemical staining showed sparse orexinergic innervation of the DLG during the light phase, with increased density at night. We hypothesise that the depolarising effects of orexins upon DLG neurons may facilitate signal transmission through the visual thalamo-cortical pathway during behavioural arousal. Thus, the action of orexin on DLG TC neurons may underlie the circadian/behavioural modulation of vision.
The physiological function of rhythmic firing in the neuronal networks of sensory systems has been linked with information coding. Also, neuronal oscillations in different frequency bands often change as a signature of brain state or sensory processing. Infra-slow oscillation (ISO) in the neuronal firing dependent on the retinal network has been described previously in the structures of the subcortical visual system. In the present study, we show for the first time that firing of ISO neurons in the lateral geniculate nucleus is also characterized by a harmonic discharge pattern (i.e. action potentials are separated by the intervals governed by fundamental frequency in the gamma range: ∼35 Hz). A similar phenomenon was recently described in the suprachiasmatic nuclei of the hypothalamus: the master biological clock. We found that both gamma and ISO rhythms were synchronized within and between ipsilateral nuclei of the subcortical visual system and were dependent on the retinal activity of the contralateral eye. These oscillatory patterns were differentially influenced by transient and prolonged light stimulation with respect to both frequency change direction and sustainability. The results of the present study show that the firing pattern of neurons in the subcortical visual system is shaped by oscillations from infra-slow and gamma frequency bands that are plausibly generated by the retinal network. Additionally, the results demonstrate that both rhythms are not a distinctive feature of image or non-image forming visual systems but, instead, they comprise two channels carrying distinctive properties of photic information.
The dorsal vagal complex of the rodent hindbrain possesses intrinsic circadian timekeeping mechanisms In particular, the nucleus of the solitary tract (NTS) is a robust circadian oscillator, independent of the master suprachiasmatic clock Here, we reveal that rat NTS neurons display timed daily rhythms in their neuronal activity and responsiveness to ingestive cues These daily rhythms are blunted or eliminated by short-term high-fat diet, together with increased consumption of calories during the behaviourally quiescent day Our results help us better understand the circadian control of satiety by the brainstem and its malfunctioning under high-fat diet ACKNOWLEDGEMENTSAuthors would like to thank Alan Zmuda, a student at the Department of Neurophysiology and Chronobiology, Jagiellonian University in Krakow, for technical assistance with behavioural procedures. We would also like to thank Patrycjusz Nowik for excellent animal care.
support-information-section). Key pointsr Recently, we found that the dorsal vagal complex displays autonomous circadian timekeeping properties r The dorsal motor nucleus of the vagus (DMV) is an executory part of this complex -a source of parasympathetic innervation of the gastrointestinal tract r Here, we reveal daily changes in the neuronal activities of the rat DMV, including firing rate, intrinsic excitability and synaptic input -all of these peaking in the late day r Additionally, we establish that short term high-fat diet disrupts these daily rhythms, boosting the variability in the firing rate, but blunting the DMV responsiveness to ingestive cues r These results help us better understand daily control over parasympathetic outflow and provide evidence on its dependence on the high-fat diet
Orexins (OXA, OXB) are hypothalamic peptides playing crucial roles in arousal, feeding, social and reward-related behaviours. A recent study on juvenile rats suggested their involvement in vision modulation due to their direct action on dorsal lateral geniculate (dLGN) neurons. The present study aimed to verify whether a similar action of OXA can be observed in adulthood. Thus, in vivo and in vitro electrophysiological recordings on adult Wistar rats across light-dark and cortical cycles were conducted under urethane anaesthesia. OXA influenced ~28% of dLGN neurons recorded in vivo by either excitation or suppression of neuronal firing. OXA-responsive neurons did not show any spatial distribution nor represent a coherent group of dLGN cells, and responded to OXA similarly across the light–dark cycle. Interestingly, some OXA-responsive neurons worked in a cortical state-dependent manner, especially during the dark phase, and ‘preferred’ cortical activation over slow-wave activity induced by urethane. The corresponding patch clamp study confirmed these results by showing that < 20% of dLGN neurons were excited by OXA under both light regimes. The results suggest that OXA is involved in the development of the visual system rather than in visual processes and further implicate OXA in the mediation of circadian and arousal-related activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.