Museums, archives and libraries have large working environments. The goal of this study was to determine microbial contamination in these work places and estimate the influence of microclimatic parameters and total dust content on microbial contamination. In addition, research included evaluation of ergosterol concentration and fungal bioaerosol particle size distribution. Numbers of micro-organisms in the air and on the surfaces in museums were higher (2.1 × 102–7.0 × 103 cfu/m3 and 1.4 × 102–1.7 × 104 cfu/100 cm2, respectively) than in archives and libraries (3.2 × 102–7.2 × 102 cfu/m3 and 8.4 × 102–8.8 × 102 cfu/100 cm2, respectively). The numbers of micro-organisms detected in the tested museums, archives and libraries did not exceed occupational exposure limits proposed by Polish Committee for the Highest Permissible Concentrations and Intensities of Noxious Agents at the Workplace. The concentrations of respirable and suspended dust in museum storerooms were 2–4 times higher than the WHO-recommended limits. We found a correlation between microclimatic conditions and numbers of micro-organisms in the air in the tested working environments. In addition, a correlation was also found between ergosterol concentration and the number of fungi in the air. Fungi were the dominant micro-organisms in the working environments tested. Particles within the dominant fractions of culturable fungal aerosols sampled from museum storerooms had aerodynamic diameters between 1.1 and 2.1 µm.
All historical textile materials, due to their chemical composition (cellulose, protein), under conditions of high humidity are potentially exposed to microbial degradation. Numerous examples of microbial deterioration of archaeological textile materials demonstrate the need for the use of modern analytical methods for examination of diversity of organisms inhabiting them, as well as an analysis of their behavior. It is recommended that objects with a high degree of microbiological contamination are disinfected before being incorporated to a collection. Today, due to the progress in research on the effects of disinfection on historical material, risks to health and the environment, new methods of disinfection are still being developed. The presented literature review describes the testing methods of microbial deterioration of historical textile materials, including the latest methods for assessing biodiversity (called Next Generation Sequencing) and properties of historical textiles (chemical, microscopic, mechanical). It is particularly suitable for conservators and scientists who are interested in biodeterioration, disinfection technology, and maintenance problems of this type. Characteristics of test methods and disinfection include their application to historical objects, description, advantages, and disadvantages, as well as directions for future studies that aim to even better protect cultural heritage using the latest scientific and technical innovations.
The unique antimicrobial features of silver nanoparticles (AgNPs) are commonly applied in innumerable products. The lack of published studies on the mechanisms of AgNPs action on fungi resulted in identification of the aim of this study, which was: the determination of the influence of AgNPs on the mould cytotoxicity for swine kidney cells (MTT test) and the production of selected mycotoxins, organic acids, extracellular enzymes by moulds. The conducted study had shown that silver nanoparticles can change the metabolism and toxicity of moulds. AgNPs decrease the mycotoxin production of Aspergillus sp. (81-96%) and reduce mould cytotoxicity (50-75%). AgNPs influence the organic acid production of A. niger and P. chrysogenum by decreasing their concentration (especially of the oxalic and citric acid). Also, a change in the extracellular enzyme profile of A. niger and P. chrysogenum was observed, however, the total enzymatic activity was increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.