Geometry and vibrational modes of the anthranilic acid molecule in the S(0) and S(1) states were computed using ab initio methods: Hartree-Fock (HF) and configuration interaction of singly excited configurations (CIS) as well as the density functional theory with time-dependent perturbation (TD-DFT). The intensity distribution in the laser-induced fluorescence excitation spectra was modeled in two ways: using displacement parameters for independent modes and using multidimensional Franck-Condon integrals. The change in the molecular geometry upon excitation was calculated from the band intensities within the above two models. Displacement parameters of eight in-plane modes active in the excitation spectrum were optimized to reproduce the experimental intensities of about 40 most intensive and well-separated vibrational bands, while displacement parameters of other in-plane modes were kept frozen at the values resulting from the quantum chemical calculations. The intramolecular hydrogen bond is significantly stronger in the S(1) state than in the ground state. Additionally, bond lengths and angles in the aromatic ring, within the substituents and between the ring and the substituents undergo significant changes and they induce the presence of strong fundamentals in the excitation spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.