Polymers of intrinsic microporosity (PIMs) are currently attracting interest due to their unusual combination of high surface areas and capability to be processed into free-standing films. However, there has been little published work with regards to their physical and mechanical properties. In this paper, detailed characterisation of PIM-1 was performed by considering its chemical, gas adsorption and mechanical properties. The polymer was cast into films, and characterised in terms of their hydrogen adsorption at -196°C up to much higher pressures (17 MPa) than previously reported (2 MPa), demonstrating the maximum excess adsorbed capacity of the material and its uptake behaviour in higher pressure regimes. The measured tensile strength of the polymer film was 31 MPa with a Young's modulus of 1.26 GPa, whereas the average storage modulus exceeded 960 MPa. The failure strain of the material was 4.4%. It was found that the film is thermally stable at low temperatures, down to -150°C, and decomposition of the material occurs at 350°C. These results suggest that PIM-1 has sufficient elasticity to withstand the elastic deformations occurring within state-of-the-art high-pressure hydrogen storage tanks and sufficient thermal stability to be applied at the range of temperatures necessary for gas storage applications.
Microporous polymer-based membranes (PIM-1) doped with a porous aromatic framework (PAF-1) combine mechanical flexibility with enhanced hydrogen uptake capacities: they can potentially store up to 6.7 wt% H2 at 77 K.
The exploration and evaluation of new composites possessing both processability and enhanced hydrogen storage capacity are of significant interest for onboard hydrogen storage systems and fuel cell based electric vehicle development. Here we demonstrate the fabrication of composite membranes with sufficient mechanical properties for enhanced hydrogen storage that are based on a polymer of intrinsic microporosity (PIM-1) matrix containing nano-sized fillers: activated carbon (AX21) or metal-organic framework (MIL-101). This is one of the first comparative studies of different composite systems for hydrogen storage and, in addition, the first detailed evaluation of the diffusion kinetics of hydrogen in polymer-based nanoporous composites. The composite films were characterised by surface area and porosity analysis, hydrogen adsorption measurements, mechanical testing and gas adsorption modelling. The PIM-1/AX21 composite with 60 wt% AX21 provides enhanced hydrogen adsorption kinetics and a total hydrogen storage capacity of up to 9.35 wt% at 77 K; this is superior to the US Department of Energy hydrogen storage target. Tensile testing indicates that the ultimate stress and strain of PIM-1/ AX21 are higher than those of the MIL-101 or PAF-1 containing composites, and are sufficient for use in hydrogen storage tanks. The data presented provides new insights into both the design and characterisation methods of polymer-based composite membranes. Our nanoporous polymer-based composites offer advantages over powders in terms of safety, handling and practical manufacturing, with potential for hydrogen storage applications either as means of increasing storage or decreasing operating pressures in high-pressure hydrogen storage tanks.
Polymers of intrinsic microporosity, such as PIM-1, advantageously combine high surface areas with good processability, which are attractive properties for hydrogen storage applications. Here we address the lack of data on the long-term mechanical stability and hydrogen uptake capacity of PIM-1 in a study carried out over 400 days. Our results show that most mechanical and surface properties of PIM-1 remain stable over this time. In particular, the mechanical strength and elasticity are maintained, and the surface area remains constant over the course of our observations. In contrast, we detected a small but statistically significant decrease of the hydrogen storage capacity of the material over time, particularly in the first stages of aging. We attribute this phenomenon to the slow rearrangement of the polymer scaffold in the solid state. Taken together, our experiments demonstrate that PIM-1 possesses the long-term stability required for realistic applications in hydrogen storage or in gas separation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.