In this research, we attempted to modify the bandgap of anodic titanium oxide by in situ incorporation of selected elements into the anodic titanium oxide during the titanium anodization process. The main aim of this research was to obtain photoactivity of anodic titanium oxide over a broader sunlight wavelength. The incorporation of the selected elements into the anodic titanium oxide was proved. It was shown that the bandgap values of anodic titanium oxides made at 60 V are in the visible region of sunlight. The smallest bandgap value was obtained for anodic titanium oxide modified by manganese, at 2.55 eV, which corresponds to a wavelength of 486.89 nm and blue color. Moreover, it was found that the pH of the electrolyte significantly affects the thickness of the anodic titanium oxide layer. The production of barrier oxides during the anodizing process with properties similar to coatings made by nitriding processes is reported for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.