Introduction. The aim of the present study was to compare the levels of circulating markers of endothelial function and low-grade inflammation in patients with subclinical and overt hyperthyroidism (OH) due to Graves disease (GD) and toxic nodular goiter (TNG). Material and Methods. The group studied consisted of 42 patients with GD, 75 patients with TNG, and 39 healthy controls. Results. Circulating markers of endothelial dysfunction were elevated in the patients with both SH and OH, but the concentrations of interleukin-12 (IL-12) (P < 0.05), IL-18 (P < 0.05), fibrinogen (P < 0.01), and von Willebrand factor (vWF) (P < 0.05) were significantly higher in the OH than in the SH group. The highest levels of IL-6, IL-12, IL-18, vWF, sVCAM-1, and fibrinogen were found in the patients with GD, but the differences between the GD, and TNG groups were not significant. In the subjects with OH serum IL-6 was positively associated with FT3 (R = 0.276, P < 0.05), FT4 (R = 0.273, P < 0.05), and thyroid peroxidase antibodies (R = 0.346, P < 0.01) levels. Conclusion. Our results may suggest that both SH and OH may be associated with endothelial dysfunction, which is reflected by decreased fibrinolytic activity, hypercoagulability, and increased levels of IL-6, IL-12, and IL-18 and depends not only on the cause but also on the degree of hyperthyroidism.
Objectives: The diagnosis and treatment of thyroid diseases in pregnant women remains a challenge. Various medical associations recommend establishing the reference intervals for thyroid hormones by a local laboratory. Considering differences within geophysical, socioeconomic conditions, and iodine prophylaxis in various populations, it is advisable to assess reference intervals for thyroid hormones specific to a region of residence. The objective was to assess trimester-specific reference intervals for TSH, fT3, and fT4 for pregnant women in the Polish population. Methods and Results: We conducted a prospective study in 4 centers representing different regions of Poland (Krakow, Warsaw, Poznan, and Bialystok). Our study included consecutive, healthy pregnant women (172 patients), with an age range of 27-47 years. All women had a negative history for thyroid diseases, normal thyroid peroxidase antibody levels, and proper iodine prophylaxis. All newborns had TSH levels in the appropriate reference range. Serum TSH, fT3, fT4, and thyroid-peroxidase antibodies were measured in each trimester. The reference intervals were calculated using the percentile method, as recommended by the International Federation of Clinical Chemistry. The reference values calculated were 0.009-3.177, 0.05-3.442, and 0.11-3.53 mIU/L for TSH; 3.63-6.55, 3.29-5.45, and 3.1-5.37 pmol/L for fT3; and 11.99-21.89, 10.46-16.67, and 8.96-17.23 pmol/L for fT4 in consecutive trimesters of pregnancy. Reference intervals for pregnant women when compared to the general population showed a lower concentration of TSH in every trimester of pregnancy and lower fT4 in the 2nd and 3rd trimesters. Conclusions: Using appropriate trimester-specific reference intervals may improve care of pregnant women by preventing misdiagnosis and inadequate treatment.
The incidence of papillary thyroid cancer (PTC) has increased in recent years. To improve the diagnostic management of PTC, we propose the use of microRNAs (miRNAs) as a biomarker. Our aim in this study was to evaluate the miRNA expression pattern in PTC using NanoString technology. We identified ten miRNAs deregulated in PTC compared with reference tissue: miR-146b-5p, miR-221-3p, miR-221-5p, miR-34-5p, miR-551b-3p, miR-152-3p, miR-15a-5p, miR-31-5p, and miR-7-5p (FDR < 0.05; |fold change (FC)| ≥ 1.5). The gene ontology (GO) analysis of differentially expressed miRNA (DEM) target genes identified the predominant involvement of epidermal growth factor receptor (EGFR), tyrosine kinase inhibitor resistance, and pathways in cancer in PTC. The highest area under the receiver operating characteristic (ROC) curve (AUC) for DEMs was found for miR-146-5p (AUC = 0.770) expression, indicating possible clinical applicability in PTC diagnosis. The combination of four miRNAs (miR-152-3p, miR-221-3p, miR-551b-3p, and miR-7-5p) showed an AUC of 0.841. Validation by real-time quantitative polymerase chain reactions (qRT-PCRs) confirmed our findings. The introduction of an miRNA diagnostic panel based on the results of our study may help to improve therapeutic decision making for questionable cases. The use of miRNAs as biomarkers of PTC may become an aspect of personalized medicine.
The prospero homeobox 1 (PROX1) gene may show pleiotropic effects on metabolism. We evaluated postprandial metabolic alterations dependently on the rs340874 genotypes, and 28 non-diabetic men were divided into two groups: high-risk (HR)-genotype (CC-genotype carriers, n = 12, 35.3 ± 9.5 years old) and low-risk (LR)-genotype (allele T carriers, n = 16, 36.3 ± 7.0 years old). Subjects participated in two meal-challenge-tests with high-carbohydrate (HC, carbohydrates 89%) and normo-carbohydrate (NC, carbohydrates 45%) meal intake. Fasting and 30, 60, 120, and 180 min after meal intake plasma samples were fingerprinted by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). In HR-genotype men, the area under the curve (AUC) of acetylcarnitine levels was higher after the HC-meal [+92%, variable importance in the projection (VIP) = 2.88] and the NC-meal (+55%, VIP = 2.00) intake. After the NC-meal, the HR-risk genotype carriers presented lower AUCs of oxidized fatty acids (−81–66%, VIP = 1.43–3.16) and higher linoleic acid (+80%, VIP = 2.29), while after the HC-meal, they presented lower AUCs of ornithine (−45%, VIP = 1.83), sphingosine (−48%, VIP = 2.78), linoleamide (−45%, VIP = 1.51), and several lysophospholipids (−40–56%, VIP = 1.72–2.16). Moreover, lower AUC (−59%, VIP = 2.43) of taurocholate after the HC-meal and higher (+70%, VIP = 1.42) glycodeoxycholate levels after the NC-meal were observed. Our results revealed differences in postprandial metabolites from inflammatory and oxidative stress pathways, bile acids signaling, and lipid metabolism in PROX1 HR-genotype men. Further investigations of diet–genes interactions by which PROX1 may promote T2DM development are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.