Studies in yeast and animals have revealed that histone deacetylases (HDACs) often act as components of multiprotein complexes, including chromatin remodelling complexes (CRCs). However, interactions between HDACs and CRCs in plants have yet to be demonstrated. Here, we present evidence for the interaction between Arabidopsis HD2C deacetylase and a BRM-containing SWI/SNF CRC. Moreover, we reveal a novel function of HD2C as a regulator of the heat stress response. HD2C transcript levels were strongly induced in plants subjected to heat treatment, and the expression of selected heat-responsive genes was up-regulated in heat-stressed hd2c mutant, suggesting that HD2C acts to down-regulate heat-activated genes. In keeping with the HDAC activity of HD2C, the altered expression of HD2C-regulated genes coincided in most cases with increased histone acetylation at their loci. Microarray transcriptome analysis of hd2c and brm mutants identified a subset of commonly regulated heat-responsive genes, and the effect of the brm hd2c double mutation on the expression of these genes was non-additive. Moreover, heat-treated 3-week-old hd2c, brm and brm hd2c mutants displayed similar rates of growth retardation. Taken together, our findings suggest that HD2C and BRM act in a common genetic pathway to regulate the Arabidopsis heat stress response.
SWI/SNF chromatin remodelers are evolutionarily conserved multiprotein complexes that use the energy of ATP hydrolysis to change chromatin structure. A characteristic feature of SWI/SNF remodelers is the occurrence in both the catalytic ATPase subunit and some auxiliary subunits, of bromodomains, the protein motifs capable of binding acetylated histones. Here, we report that the
Arabidopsis
bromodomain-containing proteins BRD1, BRD2, and BRD13 are likely true SWI/SNF subunits that interact with the core SWI/SNF components SWI3C and SWP73B. Loss of function of each single BRD protein caused early flowering but had a negligible effect on other developmental pathways. By contrast, a
brd
triple mutation (
brdx3
) led to more pronounced developmental abnormalities, indicating functional redundancy among the BRD proteins. The
brdx3
phenotypes, including hypersensitivity to abscisic acid and the gibberellin biosynthesis inhibitor paclobutrazol, resembled those of
swi/snf
mutants. Furthermore, the BRM protein level and occupancy at the direct target loci
SCL3
,
ABI5
, and
SVP
were reduced in the
brdx3
mutant background. Finally, a
brdx3 brm-3
quadruple mutant, in which SWI/SNF complexes were devoid of all constituent bromodomains, phenocopied a loss-of-function mutation in BRM. Taken together, our results demonstrate the relevance of BRDs as SWI/SNF subunits and suggest their cooperation with the bromodomain of BRM ATPase.
The present study reports on the encapsulation of Elsholtzia ciliata ethanolic extract by freeze-drying method using skim milk, sodium caseinate, gum Arabic, maltodextrin, beta-maltodextrin, and resistant-maltodextrin alone or in mixtures of two or four encapsulants. The encapsulation ability of the final mixtures was evaluated based on their microencapsulating efficiency (EE) of total phenolic compounds (TPC) and the physicochemical properties of freeze-dried powders. Results showed that the freeze-dried powders produced using two encapsulants have a lower moisture content, but higher solubility, Carr index, and Hausner ratio than freeze-dried powders produced using only one encapsulant in the formulation. The microencapsulating efficiency of TPC also varied depending on encapsulants used. The lowest EE% of TPC was determined with maltodextrin (21.17%), and the highest with sodium caseinate (83.02%). Scanning electron microscopy revealed that freeze-drying resulted in the formation of different size, irregular shape glassy particles. This study demonstrated good mucoadhesive properties of freeze-dried powders, which could be incorporated in buccal or oral delivery dosage forms. In conclusion, the microencapsulation of E. ciliata ethanolic extract by freeze-drying is an effective method to produce new value-added pharmaceutical or food formulations with polyphenols.
Mucoadhesive gelling systems based on chitosan and chitosan/β-glycerophosphate (β-GP) were developed in order to increase clotrimazole residence time in the vaginal cavity. Ex vivo mucoadhesiveness using porcine vaginal mucosa followed with mechanical, viscoelastic, and swelling properties of prepared hydrogels were evaluated. Drug-free, sterile, unmodified, and β-GP crosslinked chitosan were investigated for the in vitro cytotoxicity in CRL 2616 human vaginal mucosa cells using MTT assay, fluorescent microscopy, and flow cytometry analysis. Chitosan/β-GP hydrogels exhibited pseudoplastic and thixotropic properties. Ionic interaction between β-GP and chitosan improved mechanical properties of hydrogels in terms of hardness, cohesiveness, and compressibility. The hydrogels' ability to interact with porcine vaginal mucosa (measured as force of detachment and work of adhesion) was comparable to those obtained with reference mucoadhesive gel Replens™. Surprisingly, greater mucoadhesive properties were noticed for chitosan/β-GP hydrogels. The cytotoxic effect of unmodified and β-GP crosslinked chitosan was hardly affected by chitosan molecular weight, exhibited mainly through inducing apoptosis, and was found to be significantly lower in the presence of chitosan/β-GP. Furthermore, the higher amount of β-GP was used to crosslink chitosan, the lower cytotoxic effect was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.