Abstract. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are routinely used to treat non-small cell lung cancer (NSCLC) in patients with common activating mutations of the EGFR gene. The aim of the study was to compare the efficacies of EGFR-TKIs in patients with common (exon 19 deletions and exon 21 p.Leu858Arg) and rare EGFR mutations. A retrospective analysis of 180 NSCLC patients with common (n=167) and rare (n=13) EGFR mutations treated with erlotinib (n=98), gefitinib (n=66) and afatinib (n=16) was performed. EGFR mutations were determined using RT-PCR and the EntroGen EGFR Mutations Analysis kit. Partial and complete response (PR and CR), progression-free survival (PFS), and overall survival (OS) were analyzed. Demographic and clinical factors had no impact on PFS or OS in patients treated with EGFR-TKIs. Erlotinib, gefitinib, and afatinib showed similar efficacies based on treatment response, median PFS, and OS. The type of EGFR mutation had no impact on median OS; however, median PFS was significantly longer in patients with the exon 19 deletion compared to patients with the exon 21 p.Leu858Arg substitution and rare EGFR gene mutations (P=0.013). Patients with common EGFR mutations showed significantly longer median PFS than those with rare EGFR mutations (10 vs. 5 months; P=0.009). Erlotinib, gefitinib, and afatinib show similar efficacies in NSCLC patients with both common and rare EGFR mutations. When undergoing EGFR-TKI treatment, patients with rare EGFR mutations showed similar OS but poorer PFS. Further investigation into the associations between particular rare EGFR mutations and EGFR-TKIs treatment outcomes is required.
Lung cancer is one of the most common malignant neoplasms. As a result of the disease’s progression, patients may develop metastases to the central nervous system. The prognosis in this location is unfavorable; untreated metastatic lesions may lead to death within one to two months. Existing therapies—neurosurgery and radiation therapy—do not improve the prognosis for every patient. The discovery of Epidermal Growth Factor Receptor (EGFR)—activating mutations and Anaplastic Lymphoma Kinase (ALK) rearrangements in patients with non-small cell lung adenocarcinoma has allowed for the introduction of small-molecule tyrosine kinase inhibitors to the treatment of advanced-stage patients. The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein with tyrosine kinase-dependent activity. EGFR is present in membranes of all epithelial cells. In physiological conditions, it plays an important role in the process of cell growth and proliferation. Binding the ligand to the EGFR causes its dimerization and the activation of the intracellular signaling cascade. Signal transduction involves the activation of MAPK, AKT, and JNK, resulting in DNA synthesis and cell proliferation. In cancer cells, binding the ligand to the EGFR also leads to its dimerization and transduction of the signal to the cell interior. It has been demonstrated that activating mutations in the gene for EGFR-exon19 (deletion), L858R point mutation in exon 21, and mutation in exon 20 results in cancer cell proliferation. Continuous stimulation of the receptor inhibits apoptosis, stimulates invasion, intensifies angiogenesis, and facilitates the formation of distant metastases. As a consequence, the cancer progresses. These activating gene mutations for the EGFR are present in 10–20% of lung adenocarcinomas. Approximately 3–7% of patients with lung adenocarcinoma have the echinoderm microtubule-associated protein-like 4 (EML4)/ALK fusion gene. The fusion of the two genes EML4 and ALK results in a fusion gene that activates the intracellular signaling pathway, stimulates the proliferation of tumor cells, and inhibits apoptosis. A new group of drugs—small-molecule tyrosine kinase inhibitors—has been developed; the first generation includes gefitinib and erlotinib and the ALK inhibitor crizotinib. These drugs reversibly block the EGFR by stopping the signal transmission to the cell. The second-generation tyrosine kinase inhibitor (TKI) afatinib or ALK inhibitor alectinib block the receptor irreversibly. Clinical trials with TKI in patients with non-small cell lung adenocarcinoma with central nervous system (CNS) metastases have shown prolonged, progression-free survival, a high percentage of objective responses, and improved quality of life. Resistance to treatment with this group of drugs emerging during TKI therapy is the basis for the detection of resistance mutations. The T790M mutation, present in exon 20 of the EGFR gene, is detected in patients treated with first- and second-generation TKI and is overcome by Osimertinib, a third-generation TKI. The I117N resistance mutation in patients with the ALK mutation treated with alectinib is overcome by ceritinib. In this way, sequential therapy ensures the continuity of treatment. In patients with CNS metastases, attempts are made to simultaneously administer radiation therapy and tyrosine kinase inhibitors. Patients with lung adenocarcinoma with CNS metastases, without activating EGFR mutation and without ALK rearrangement, benefit from immunotherapy. This therapeutic option blocks the PD-1 receptor on the surface of T or B lymphocytes or PD-L1 located on cancer cells with an applicable antibody. Based on clinical trials, pembrolizumab and all antibodies are included in the treatment of non-small cell lung carcinoma with CNS metastases.
Lung cancer is the most common cause of cancer-related death worldwide, and the prognosis for stage IV remains poor. The presence of genetic alterations in tumor cells, such as EGFR and BRAF gene mutations, as well as ALK and ROS1 gene rearrangements, are indications for targeted therapies. Many such treatments are already registered and used on a wide scale. In comparison to standard chemotherapy, they can prolong not only progression-free survival but also overall survival. Moreover, they are able to provide excellent quality of life and rapid improvement of cancer-related symptoms such as dyspnea, cough and pain. Recent years have witnessed great advances in both molecular diagnostics and new molecular therapies for non-small-cell lung cancer. This review presents new therapeutic targets in NSCLC, as well as drugs of which the activity against NTRK, RET, MET or HER2 gene alterations (including EGFR exon 20 insertions) has either been confirmed or is currently being evaluated. Although these particular genetic alterations in NSCLC are generally rare, each accounting for 1–2% of patients, in total about half of all patients have molecular alterations and may ultimately receive targeted therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.