It was previously reported that the activation of antitumor immune response by photodynamic therapy (PDT) is crucial for its therapeutic outcome. Excessive PDT-mediated inflammation is accompanied by immunosuppressive mechanisms that protect tissues from destruction. Thus, the final effect of PDT strongly depends on the balance between the activation of an adoptive arm of immune response and a range of activated immunosuppressive mechanisms. Here, with flow cytometry and functional tests, we evaluate the immunosuppressive activity of tumor-associated myeloid cells after PDT. We investigate the antitumor potential of PDT combined with indoleamine 2,3-dioxygenase 1 (IDO) inhibitor in the murine 4T1 and E0771 orthotopic breast cancer models. We found that the expression of IDO, elevated after PDT, affects the polarization of T regulatory cells and influences the innate immune response. Our results indicate that, depending on a therapeutic scheme, overcoming IDO-induced immunosuppressive mechanisms after PDT can be beneficial or can lead to a systemic toxic reaction. The inhibition of IDO, shortly after PDT, activates IL-6-dependent toxic reactions that can be diminished by the use of anti-IL-6 antibodies. Our results emphasize that deeper investigation of the physiological role of IDO, an attractive target for immunotherapies of cancer, is of great importance.
Stimulation of Toll-like receptor 7 (TLR7) activates myeloid cells and boosts the immune response. Previously, we have shown that stimulation of the inhibitory CD200 receptor (CD200R) suppresses TLR7 signaling and that the absence of CD200R signaling leads to a decreased number of papillomas in mice. Here, we investigated the effects of agonistic anti-CD200R on the antitumor activity of a TLR7 agonist (R848) in a syngeneic mouse tumor model. Intratumoral administration of R848 inhibited the growth of the CT26 colon carcinoma and simultaneously decreased CD200R expression in tumor-infiltrating immune cells. The antitumor effects of R848 were potentiated by anti-CD200R. Successfully treated mice were resistant to rechallenge with the same tumor cells. However, the immediate antitumor effects were independent of lymphocytes, because treatment efficacy was similar in wild-type and mice. Administration of R848, particularly in combination with anti-CD200R, changed the phenotype of intratumoral myeloid cells. The infiltration with immature MHC-II macrophages decreased and in parallel monocytes and immature MHC-II macrophages increased. Combined treatment decreased the expression of the macrophage markers F4/80, CD206, CD86, CD115, and the ability to produce IL1β, suggesting a shift in the composition of intratumor myeloid cells. Adoptively transferred CD11b myeloid cells, isolated from the tumors of mice treated with R848 and anti-CD200R, inhibited tumor outgrowth in recipient mice. We conclude that administration of agonistic anti-CD200R improves the antitumor effects of TLR7 signaling and changes the local tumor microenvironment, which becomes less supportive of tumor progression. .
Recent studies indicate the critical role of tumour associated macrophages, tumour associated neutrophils, dendritic cells, T lymphocytes, and natural killer cells in tumourigenesis. These cells can have a significant impact on the tumour microenvironment via their production of cytokines and chemokines. Additionally, products secreted from all these cells have defined specific roles in regulating tumour cell proliferation, angiogenesis, and metastasis. They act in a protumour capacity in vivo as evidenced by the recent studies indicating that macrophages, T cells, and neutrophils may be manipulated to exhibit cytotoxic activity against tumours. Therefore therapy targeting these cells may be promising, or they may constitute drug or anticancer particles delivery systems to the tumours. Herein, we discussed all these possibilities that may be used in cancer treatment.
Tumor-infiltrating immune cells can impact tumor growth and progression. The inhibitory CD200 receptor (CD200R) suppresses the activation of myeloid cells and lack of this pathway results in a reduction of tumor growth, conversely a tumorigenic effect of CD200R triggering was also described. Here we investigated the role of CD200R activation in syngeneic mouse tumor models. We showed that agonistic CD200R antibody reached tumors, but had no significant impact on tumor growth and minor effect on infiltration of immune myeloid cells. These effects were reproduced using two different anti-CD200R clones. In contrast, we showed that CD200-deficiency did decrease melanoma tumor burden. The presence of either endogenous or tumor-expressed CD200 restored the growth of metastatic melanoma foci. On the basis of these findings, we conclude that blockade of the endogenous ligand CD200 prevented the tumorigenic effect of CD200R-expressing myeloid cells in the tumor microenvironment, whereas agonistic anti-CD200R has no effect on tumor development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.