BackgroundGenetic background of Riedel's thyroiditis remains unknown. Herein, we describe our results of studies on genes expression levels in Riedel's thyroiditis.Case report and genetic findingsWe report the case of 48-year old woman with Riedel's thyroiditis who has presented unusual course of disease with non-specific cervical discomfort, though as with no pain and/or no compression symptoms. After surgery, thyroid specimens were quantitatively evaluated, regarding PIK3CA, PIK3CD, PIK3CG, Tg, TGFB1, THRB, COL1, CDKN1C, CDH3 and CACNA2D2 genes expression levels, by real-time PCR in the ABI PRISM® 7500 Sequence Detection System. Out of 10 above genes, in 2 cases the expression was higher than in respective Controls of unchanged thyroid tissue. In the remaining 8 cases, expression in question became comparable or lower as in Controls.DiscussionThe association between increased expression levels of PIK3CA and CDH3 genes and Riedel's thyroiditis is not well-defined. However, the increased expression of PIK3CA and CDH3 genes in our case report and in previous studies of other authors on various malignancies may suggest possible molecular relation between Riedel's thyroiditis and certain neoplastic processes, the relation of which requires further genetic evaluation. It is to be stressed that gene expression studies in Riedel's thyroiditis are difficult to perform, mainly due to fibrosis, resulting in scarce thyroid specimens and - in consequence - small amount of genetic material.
BackgroundRET/PTC rearrangements are the most frequent molecular changes in papillary thyroid carcinoma (PTC). So far, 15 main RET/PTC rearrangements have been described, among which RET/PTC1 and RET/PTC3 are the most common in PTC - especially in radiation-induced tumours. RET/PTC1 and RET/PTC3 are the result of intrachromosomal paracentric inversions in chromosome 10, where RET and the activating genes (H4 and ELE1, respectively) are located. Recently, RET/PTC rearrangements have been shown not only in PTC but also in benign thyroid lesions, including Hashimoto's thyroiditis (HT). The aim of study was an assessment of RET/PTC1 and RET/PTC3 rearrangements in patients with Hashimoto's thyroiditis.Materials and methodsThyroid aspirates, eligible for the study, were obtained from 26 patients with Hashimoto's thyroiditis by fine-needle aspiration biopsy (FNAB). Each aspirate was smeared for conventional cytology, while its remaining part was immediately washed out of the needle. The cells, obtained from the needle, were used in further investigation. Total RNA from FNAB was extracted by use of an RNeasy Micro Kit, based on modified Chomczynski and Sacchi's method and reverse transcription (RT-PCR) was done. Quantitative evaluation of RET/PTC1 and RET/PTC3 rearrangements by real-time PCR was performed by an ABI PRISM® 7500 Sequence Detection System. In the study, PTC tissues with known RET/PTC1 and RET/PTC3 rearrangements served as a reference standard (calibrator), while β-actin gene was used as endogenous control.ResultsAmplification reactions were done in triplicate for each examined sample. No RET/PTC1 and RET/PTC3 rearrangements were found in the examined samples.ConclusionsOur results indicate that RET/PTC1 and RET/PTC3 rearrangements in Hashimoto's thyroiditis, if any, are rather rare events and further investigations should be conducted in order to determine molecular changes, connecting Hashimoto's thyroiditis with PTC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.