An unusual decline and collapse of young established trees known as "rapid apple decline" (RAD) has become a major concern for apple growers, particularly in the northeastern United States. This decline is characterized by stunted growth, pale yellow to reddish leaves, and tree collapse within weeks after onset of symptoms. We studied declining apple trees to identify potential involvement of abiotic and biotic stresses. We used 16S and ITS to profile bacterial and fungal communities in the soil, rhizosphere, roots, and shoots and tested for the presence of six viruses in scions and rootstocks of symptomatic and asymptomatic trees. The viruses detected were not associated with RAD symptoms. Bacterial and fungal populations were highly variable in plant tissue, soil and rhizosphere samples, with bacteroidetes, firmicutes, proteobacteria, acidobacteria, and actinobacteria the predominant bacterial classes in various samples. 'Alphaproteobacteria-rickettsiales', a bacterial class usually reduced in water-limiting soils, had significantly low abundance in root samples of symptomatic trees. Basidiomycota and Ascomycota fungal classes were the most common fungal classes observed, but neither showed differential enrichment between symptomatic and asymptomatic trees. Analyzing weather data showed an extremely cold winter followed by drought in 2015-2016, which likely weakened the trees to make them more susceptible to varied stresses. In addition, similar physical and nutritional soil composition from symptomatic and asymptomatic trees rules out the role of nutritional stress in RAD. Necrotic lesions and wood decay symptoms dispersing from bark or vascular cambium towards the heartwood were observed primarily below the graft union of declining apple trees, suggesting that the rootstock is the originating point of RAD. We speculate that differences in abiotic factors such as moisture levels in declining roots in combination with extreme weather profiles might cause RAD but cannot clearly rule out the involvement of other factors.
Apple cultivars with durable resistance are needed for sustainable management of fire blight, the most destructive bacterial disease of apples. Although studies have identified genetic resistance to fire blight in both wild species and cultivated apples, more research is needed to understand the molecular mechanisms underlying host-pathogen interaction and differential genotypic responses to fire blight infection. We have analyzed phenotypic and transcriptional responses of 'Empire' and 'Gala' apple cultivars to fire blight by infecting them with a highly aggressive E. amylovora strain. Disease progress, based on the percentage of visual shoot necrosis, started showing significant (p < 0.001) differences between 'Empire' and 'Gala' 4 days after infection (dai). 'Empire' seems to slow down bacterial progress more rapidly after this point. We further compared transcriptome profiles of 'Empire' and 'Gala' at three different time points after fire blight infection. More genes showed differential expression in 'Gala' at earlier stages, but the number of differentially expressed genes increased in 'Empire' at 3 dai. Functional classes related to defense, cell cycle, response to stress, and biotic stress were identified and a few co-expression gene networks showed particular enrichment for plant defense and abiotic stress response genes. Several of these genes also co-localized in previously identified quantitative trait locus regions for fire blight resistance on linkage groups 7 and 12, and can serve as functional candidates for future research. These results highlight different molecular mechanisms for pathogen perception and control in two apple cultivars and will contribute toward better understanding of E. amylovora-Malus pathosystem.
Development of apple (Malus domestica) cultivars resistant to fire blight, a devastating bacterial disease caused by Erwinia amylovora, is a priority for apple breeding programs. Towards this goal, the inactivation of members of the HIPM and DIPM gene families with a role in fire blight susceptibility (S genes) can help achieve sustainable tolerance. We have investigated the genomic diversity of HIPM and DIPM genes in Malus germplasm collections and used a candidate gene-based association mapping approach to identify SNPs (single nucleotide polymorphisms) with significant associations to fire blight susceptibility. A total of 87 unique SNP variants were identified in HIPM and DIPM genes across 93 Malus accessions. Thirty SNPs showed significant associations (p < 0.05) with fire blight susceptibility traits, while two of these SNPs showed highly significant (p < 0.001) associations across two different years. This research has provided knowledge about genetic diversity in fire blight S genes in diverse apple accessions and identified candidate HIPM and DIPM alleles that could be used to develop apple cultivars with decreased fire blight susceptibility via marker-assisted breeding or biotechnological approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.