BackgroundJournals are trying to make their papers more accessible by creating a variety of research summaries including graphical abstracts, video abstracts, and plain language summaries. It is unknown if individuals with science, science-related, or non-science careers prefer different summaries, which approach is most effective, or even what criteria should be used for judging which approach is most effective. A survey was created to address this gap in our knowledge. Two papers from Nature on similar research topics were chosen, and different kinds of research summaries were created for each one. Questions to measure comprehension of the research, as well as self-evaluation of enjoyment of the summary, perceived understanding after viewing the summary, and the desire for more updates of that summary type were asked to determine the relative merits of each of the summaries.ResultsParticipants (n = 538) were randomly assigned to one of the summary types. The response of adults with science, science-related, and non-science careers were slightly different, but they show similar trends. All groups performed well on a post-summary test, but participants reported higher perceived understanding when presented with a video or plain language summary (p<0.0025). All groups enjoyed video abstracts the most followed by plain language summaries, and then graphical abstracts and published abstracts. The reported preference for different summary types was generally not correlated to the comprehension of the summaries. Here we show that original abstracts and graphical abstracts are not as successful as video abstracts and plain language summaries at producing comprehension, a feeling of understanding, and enjoyment. Our results indicate the value of relaxing the word counts in the abstract to allow for more plain language or including a plain language summary section along with the abstract.
SummaryMany enveloped viruses require the endosomal sorting complexes required for transport (ESCRT) pathway to exit infected cells. This highly conserved pathway mediates essential cellular membrane fission events and therefore has limited potential to acquire adaptive mutations to counteract this co-option by viruses. Here, we describe duplicated and truncated copies of the ESCRT-III factor CHMP3 that arose independently in New World monkeys and mice and that block ESCRT-dependent virus budding. When expressed in human cells, these retroCHMP3 proteins potently inhibit the release of retroviruses, paramyxoviruses and filoviruses. RetroCHMP3 proteins have evolved to reduce interactions with other ESCRT-III factors, and to have little effect on cellular ESCRT processes, revealing routes for decoupling cellular ESCRT functions from exploitation by viruses. The repurposing of duplicated ESCRT-III proteins thus provides a mechanism to generate broad-spectrum viral budding inhibitors without disrupting highly conserved essential cellular ESCRT functions.
7The HIV-1 accessory protein Vpr is packaged into new virions at a 7:1 ratio of Gag/Vpr. 8 Previous biochemical and genetic analysis has shown that Vpr gets packaged into virions 9 via an LXXLF motif on the p6 domain of the Gag structural polyprotein. The kinetics of 10
Creating a compelling visual representation of your data can be challenging, but it is worth it. Infographics and graphical abstracts are common forms of data visualizations within the world of science, but no matter what you call them, these visuals are short stories meant to be shared widely. When done well, a visualization of your data can attract new readers and quickly tell them the main point of your research. Your visual can get more people to read your paper and engage with you about your research. In this article, we’ll talk through the steps of making a simple, accurate and beautiful visual that is sure to catch the eyes of readers everywhere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.