Cardiovascular disease, rare in premenopausal women, increases sharply at menopause and is typically accompanied by chronic inflammation. Previous work in our laboratory demonstrated that replacing senescent ovaries in post-reproductive mice with young, actively cycling ovaries restored many health benefits, including decreased cardiomyopathy and restoration of immune function. Our objective here was to determine if depletion of germ cells from young transplanted ovaries would alter the ovarian-dependent extension of life and health span. Sixty-day-old germ cell-depleted and germ cell-containing ovaries were transplanted to postreproductive, 17-month-old mice. Mean life span for female CBA/J mice is approximately 644 days. Mice that received germ cell-containing ovaries lived 798 days (maximum = 815 days). Mice that received germ cell-depleted ovaries lived 880 days (maximum = 1046 days), 29% further past the time of surgery than mice that received germ cellcontaining ovaries. The severity of inflammation was reduced in all mice that received young ovaries, whether germ cell-containing or germ cell-depleted. Aging-associated inflammatory cytokine changes were reversed in post-reproductive mice by 4 months of new-ovary exposure. In summary, germ cell depletion enhanced the longevity-extending effects of the young, transplanted ovaries and, as with germ cell-containing ovaries, decreased the severity of inflammation, but did so independent of germ cells. Based on these observations, we propose that gonadal somatic cells are programed to preserve the somatic health of the organism with the intent of facilitating future germline transmission. As reproductive potential decreases or is lost, the incentive to preserve the somatic health of the organism is lost as well.
The link between survival and reproductive function is demonstrated across many species and is under both long-term evolutionary pressures and short-term environmental pressures. Loss of reproductive function is common in mammals and is strongly correlated with increased rates of disease in both males and females. However, the reproduction-associated change in disease rates is more abrupt and more severe in women, who benefit from a significant health advantage over men until the age of menopause. Young women with early ovarian failure also suffer from increased disease risks, further supporting the role of ovarian function in female health. Contemporary experiments where the influence of young ovarian tissue has been restored in post-reproductive-aged females with surgical manipulation were found to increase survival significantly. In these experiments, young, intact ovaries were used to replace the aged ovaries of females that had already reached reproductive cessation. As has been seen previously in primitive species, when the young mammalian ovaries were depleted of germ cells prior to transplantation to the post-reproductive female, survival was increased even further than with germ cell-containing young ovaries. Thus, extending reproductive potential significantly increases survival and appears to be germ cell and ovarian hormone-independent. The current review will discuss historical and contemporary observations and theories that support the link between reproduction and survival and provide hope for future clinical applications to decrease menopause-associated increases in disease risks.
Ovarian transplantation was first conducted at Utah State University in 1963. In more recent work, heterochronic transplantation of mammalian ovaries is being used to investigate the health-protective effects of young ovaries in young females. The current procedures employ an orthotopic transplantation method, where allogenic ovaries are transplanted back to their original position in the ovarian bursa. This is in contrast to the more commonly used heterotopic transplantation of ovaries/ovarian tissue subcutaneously or under the kidney capsule. All three locations provide efficient revascularization of the transplanted tissues. However, orthotopic transplantation provides the ovary with the most natural signaling environment and is the only procedure that provides the opportunity for the animal to reproduce naturally post-operatively. One must take care to remove all endogenous ovarian tissue during the ovariectomy procedure. If any endogenous tissue remains or if only one ovary is removed, the transplanted tissue will remain dormant until the existing tissue becomes senescent. While revascularization of the transplanted ovaries occurs very quickly, the transplant recipient can take a considerable amount of time to adapt to a new hypothalamic/pituitary/gonadal/ adrenal (HPG/A) axis signaling regime associated with the transplanted tissue. This normally takes about 100 days in the mouse. Therefore, transplantation experiments should be designed to accommodate this adaptation period. Typical results with ovarian transplantation will include changes in the health of the recipient that reflect the age of the transplanted ovary, rather than the chronological age of the recipient.
There is compelling evidence that oocytes from mares >18 years of age have a high incidence of inherent defects that result in early embryonic loss. In women, an age-related decrease in oocyte quality is associated with an increased incidence of aneuploidy and it has recently been determined that the gene expression profile of human oocytes is altered with advancing age. We hypothesised that similar age-related aberrations in gene expression occur in equine oocytes. Therefore, the aim of the present study was to compare gene expression profiles of individual oocytes and cumulus cells from young and aged mares, specifically evaluating genes that have been identified as being differentially expressed with advancing maternal age and/or aneuploidy in human oocytes. Expression of 48 genes was compared between 14 cumulus-oocyte complexes (COCs) from mares aged 3-12 years and 10 COCs from mares ≥18 years of age. Three genes (mitochondrial translational initiation factor 3 (IF3), heat shock transcription factor 5 (HSF5) and Y box binding protein 2 (YBX2)) were differentially expressed in oocytes, with all being more abundant in oocytes from young mares. Three genes (ADP-ribosylation factor-like 6 interacting protein 6 (ARL6IP6), BCL2-associated X protein (BAX) and hypoxia upregulated 1 (HYOU1)) were differentially expressed in cumulus cells, with all being more abundant in aged mares. The results of the present study confirm there are age-related differences in gene expression in equine COCs, which may be associated with the lower quality and decreased developmental competence of oocytes from aged mares.
Proper immune functioning is necessary to maximize reproductive success. In addition, age-associated uremia in women is often associated with hypothalamic--pituitary-gonadal dysfunction. In the present experiments, we tested immune and renal function to determine if exposure of postreproductive mice to young, reproductively cycling ovaries would influence non-reproductive physiological functions. Control female CBA/J mice were evaluated at 6, 13 and 16 months of age. Additional mice received new (60-day-old) ovaries at 12 months of age and were evaluated at 16 months of age. Consequently, 6-month-old control mice and 16-month-old recipient mice both possessed 6-month-old ovaries and were reproductively cycling. A significant age-related decline in immune function (T-cell subset analysis) was found in 16-month-old mice, but was improved 64% by ovarian transplantation. Renal function (blood urea nitrogen:creatinine ratio) was also decreased with aging, but ovarian transplantation restored function to levels found in 6-month-old mice. In summary, we have shown that immune and renal function, which are negatively influenced by aging, can be positively influenced or restored by re-establishment of active ovarian function in aged female mice. These findings provide a strong incentive for further investigation of the positive influence of young ovaries on restoration of health in postreproductive females.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.