Unlike most other cell types, neurons preferentially metabolize glucose via the pentose phosphate pathway (PPP) to maintain their antioxidant status. Inhibiting the PPP in neuronal cell models causes cell death. In rodents, inhibition of this pathway causes selective dopaminergic cell death leading to motor deficits resembling parkinsonism. Using postmortem human brain tissue, we characterized glucose metabolism via the PPP in sporadic Parkinson's disease (PD), Alzheimer's disease (AD), and controls. AD brains showed increased nicotinamide adenine dinucleotide phosphate (NADPH) production in areas affected by disease. In PD however, increased NADPH production was only seen in the affected areas of late-stage cases. Quantifying PPP NADPH-producing enzymes glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase by enzyme-linked immunosorbent assay, showed a reduction in the putamen of early-stage PD and interestingly in the cerebellum of early and late-stage PD. Importantly, there was no decrease in enzyme levels in the cortex, putamen, or cerebellum of AD. Our results suggest that down-regulation of PPP enzymes and a failure to increase antioxidant reserve is an early event in the pathogenesis of sporadic PD.
BackgroundThe autosomal-recessive cerebellar ataxias (ARCA) are a clinically and genetically heterogeneous group of neurodegenerative disorders. The large number of ARCA genes leads to delay and difficulties obtaining an exact diagnosis in many patients and families. Ubiquinone (CoQ10) deficiency is one of the potentially treatable causes of ARCAs as some patients respond to CoQ10 supplementation. The AarF domain containing kinase 3 gene (ADCK3) is one of several genes associated with CoQ10 deficiency. ADCK3 encodes a mitochondrial protein which functions as an electron-transfer membrane protein complex in the mitochondrial respiratory chain (MRC).MethodsWe report two siblings from a consanguineous Pakistani family who presented with cerebellar ataxia and severe myoclonus from adolescence. Whole exome sequencing and biochemical assessment of fibroblasts were performed in the index patient.ResultsA novel homozygous frameshift mutation in ADCK3 (p.Ser616Leufs*114), was identified in both siblings. This frameshift mutation results in the loss of the stop codon, extending the coding protein by 81 amino acids. Significant CoQ10 deficiency and reduced MRC enzyme activities in the index patient's fibroblasts suggested that the mutant protein may reduce the efficiency of mitochondrial electron transfer. CoQ10 supplementation was initiated following these genetic and biochemical analyses. She gained substantial improvement in myoclonic movements, ataxic gait and dysarthric speech after treatment.ConclusionThis study highlights the importance of diagnosing ADCK3 mutations and the potential benefit of treatment for patients. The identification of this new mutation broadens the phenotypic spectrum associated with ADCK3 mutations and provides further understanding of their pathogenic mechanism.
Disorders of coenzyme Q(10) (CoQ(10)) biosynthesis represent the most treatable subgroup of mitochondrial diseases. Neurological involvement is frequently observed in CoQ(10) deficiency, typically presenting as cerebellar ataxia and/or seizures. The aetiology of the neurological presentation of CoQ(10) deficiency has yet to be fully elucidated and therefore in order to investigate these phenomena we have established a neuronal cell model of CoQ(10) deficiency by treatment of neuronal SH-SY5Y cell line with para-aminobenzoic acid (PABA). PABA is a competitive inhibitor of the CoQ(10) biosynthetic pathway enzyme, COQ2. PABA treatment (1 mM) resulted in a 54 % decrease (46 % residual CoQ(10)) decrease in neuronal CoQ(10) status (p < 0.01). Reduction of neuronal CoQ(10) status was accompanied by a progressive decrease in mitochondrial respiratory chain enzyme activities, with a 67.5 % decrease in cellular ATP production at 46 % residual CoQ(10). Mitochondrial oxidative stress increased four-fold at 77 % and 46 % residual CoQ(10). A 40 % increase in mitochondrial membrane potential was detected at 46 % residual CoQ(10) with depolarisation following oligomycin treatment suggesting a reversal of complex V activity. This neuronal cell model provides insights into the effects of CoQ(10) deficiency on neuronal mitochondrial function and oxidative stress, and will be an important tool to evaluate candidate therapies for neurological conditions associated with CoQ(10) deficiency.
Use of d6 -CoQ10 internal standard has enabled the development of a sensitive LC/MS/MS method to accurately determine total CoQ10 levels. Clinical applications of CSF CoQ10 determination include identification of patients with cerebral CoQ10 deficiency, and monitoring CSF CoQ10 levels following supplementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.