In contrast to mSod1KO mice, myofiber atrophy in Sod1 mice was associated with increased muscle oxidative damage, neuromuscular junction degeneration, denervation, nerve demyelination, and upregulation of proteins involved in maintenance of myelin sheaths. Proteomic analyses confirmed increased proteasomal activity and adaptive stress responses in muscle of Sod1 mice that were absent in mSod1KO mice. Peripheral nerve from neither Sod1 nor mSod1KO mice showed increased oxidative damage or molecular responses to increased oxidation compared with wild type mice. Differential cysteine (Cys) labeling revealed a specific redox shift in the catalytic Cys residue of peroxiredoxin 6 (Cys47) in the peripheral nerve from Sod1 mice. Innovation and Conclusion: These findings demonstrate that neuromuscular integrity, redox mechanisms, and pathways are differentially altered in nerve and muscle of Sod1 and mSod1KO mice. Results support the concept that impaired redox signaling, rather than oxidative damage, in peripheral nerve plays a key role in muscle loss in Sod1 mice and potentially sarcopenia during aging. Antioxid. Redox Signal. 28, 275-295.
Skeletal muscle is a major site of metabolic activity and is the most abundant tissue in the human body. Age‐related muscle atrophy (sarcopenia) and weakness, characterized by progressive loss of lean muscle mass and function, is a major contributor to morbidity and has a profound effect on the quality of life of older people. With a continuously growing older population (estimated 2 billion of people aged >60 by 2050), demand for medical and social care due to functional deficits, associated with neuromuscular ageing, will inevitably increase. Despite the importance of this ‘epidemic’ problem, the primary biochemical and molecular mechanisms underlying age‐related deficits in neuromuscular integrity and function have not been fully determined. Skeletal muscle generates reactive oxygen and nitrogen species (RONS) from a variety of subcellular sources, and age‐associated oxidative damage has been suggested to be a major factor contributing to the initiation and progression of muscle atrophy inherent with ageing. RONS can modulate a variety of intracellular signal transduction processes, and disruption of these events over time due to altered redox control has been proposed as an underlying mechanism of ageing. The role of oxidants in ageing has been extensively examined in different model organisms that have undergone genetic manipulations with inconsistent findings. Transgenic and knockout rodent studies have provided insight into the function of RONS regulatory systems in neuromuscular ageing. This review summarizes almost 30 years of research in the field of redox homeostasis and muscle ageing, providing a detailed discussion of the experimental approaches that have been undertaken in murine models to examine the role of redox regulation in age‐related muscle atrophy and weakness.
ObjectiveSevere vitamin D deficiency is a recognised cause of skeletal muscle fatigue and myopathy. The aim of this study was to examine whether chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is associated with altered circulating vitamin D metabolites.DesignCohort study.SettingUK university hospital, recruiting from April 2014 to April 2015.ParticipantsNinety-two patients with CFS/ME and 94 age-matched healthy controls (HCs).Main outcome measuresThe presence of a significant association between CFS/ME, fatigue and vitamin D measures.ResultsNo evidence of a deficiency in serum total 25(OH) vitamin D (25(OH)D2 and 25(OH)D3 metabolites) was evident in individuals with CFS/ME. Liquid chromatography tandem mass spectrometry (LC–MS/MS) analysis revealed that total 25(OH)D was significantly higher (p=0.001) in serum of patients with CFS/ME compared with HCs (60.2 and 47.3 nmol/L, respectively). Analysis of food/supplement diaries with WinDiets revealed that the higher total 25(OH) vitamin D concentrations observed in the CFS/ME group were associated with increased vitamin D intake through use of supplements compared with the control group. Analysis of Chalder Fatigue Questionnaire data revealed no association between perceived fatigue and vitamin D levels.ConclusionsLow serum concentrations of total 25(OH)D do not appear to be a contributing factor to the level of fatigue of CFS/ME.
Major histocompatibility complex (MHC) I is an important component of intracellular antigen presentation. However, improper expression of MHC I upon the cell surface has been associated with several autoimmune diseases. Myositis is a rare acquired autoimmune disease which targets skeletal muscle, and MHC I overexpression on the surface of muscle fibres and immune cell infiltration are clinical hallmarks. MHC I overexpression may have an important pathogenic role, mediated by the activation of the endoplasmic reticulum (ER) stress response. Given the evidence that muscle is a diverse source of cytokines, we aimed to investigate whether MHC I overexpression can modify the profile of muscle‐derived cytokines and what role the ER stress pathway may play. Using C2C12 myoblasts we overexpressed MHC I with a H‐2kb vector in the presence or absence of salubrinal an ER stress pathway modifying compound. MHC I overexpression induced ER stress pathway activation and elevated cytokine gene expression. MHC I overexpression caused significant release of cytokines and chemokines, which was attenuated in the presence of salubrinal. Conditioned media from MHC I overexpressing cells induced in vitro T‐cell chemotaxis, atrophy of healthy myotubes and modified mitochondrial function, features which were attenuated in the presence of salubrinal. Collectively, these data suggest that MHC I overexpression can induce pro‐inflammatory cytokine/chemokine release from C2C12 myoblasts, a process which appears to be mediated in‐part by the ER stress pathway.
Myalgic Encephalomyelitis (ME) /Chronic Fatigue Syndrome (CFS) is a severely debilitating and complex illness of uncertain aetiology, affecting the lives of millions and characterised by prolonged fatigue. The initiating factors and mechanisms leading to chronic debilitating muscle fatigue in ME/CFS are unknown and are complicated by the time required for diagnosis. Both mitochondrial dysfunction and inflammation have been proposed to be central to the pathogenesis of ME/CFS. This original and extensive study demonstrated that although there was little dysfunction evident in the muscle mitochondria of patients with ME/CFS, particular blood plasma and skeletal muscle cytokines, when adjusted for age, gender and cytokine interactions could predict both diagnosis and a number of measures common to patients with ME/CFS. These included MVC and perceived fatigue as well as cognitive indices such as pattern and verbal reaction times. We employed advanced multivariate analyses to cytokine profiles that leverages covariation and intrinsic redundancy to identify patterns of immune signaling that can be evaluated for their predictions of disease phenotype. The current study identified discriminatory cytokine profiles that can be sufficiently used to distinguish HCs from patients with ME/CFS and provides compelling evidence that a limited number of cytokines are associated with diagnosis and fatigue. Moreover, this study demonstrates significant potential of using multiplex cytokine profiles and bioinformatics as diagnostic tools for ME/CFS, potentiating the possibility of not only diagnosis, but also being able to individually personalise therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.