Low oxygen tension (hypoxia) is a pervasive physiological and pathophysiological stimulus that metazoan organisms have contended with since they evolved from their single-celled ancestors. The effect of hypoxia on a tissue can be either positive or negative, depending on the severity, duration and context. Over the long-term, hypoxia is not usually consistent with normal function and so multicellular organisms have had to evolve both systemic and cellular responses to hypoxia. Our reliance on oxygen for efficient adenosine triphosphate (ATP) generation has meant that the cellular metabolic network is particularly sensitive to alterations in oxygen tension. Metabolic changes in response to hypoxia are elicited through both direct mechanisms, such as the reduction in ATP generation by oxidative phosphorylation or inhibition of fatty-acid desaturation, and indirect mechanisms including changes in isozyme expression through hypoxia-responsive transcription factor activity. Significant regions of cancers often grow in hypoxic conditions owing to the lack of a functional vasculature. As hypoxic tumour areas contain some of the most malignant cells, it is important that we understand the role metabolism has in keeping these cells alive. This review will outline our current understanding of many of the hypoxia-induced changes in cancer cell metabolism, how they are affected by other genetic defects often present in cancers, and how these metabolic alterations support the malignant hypoxic phenotype.
The tricarboxylic acid (TCA) cycle is a central metabolic pathway responsible for supplying reducing potential for oxidative phosphorylation and anabolic substrates for cell growth, repair and proliferation. As such it thought to be essential for cell proliferation and tissue homeostasis. However, since the initial report of an inactivating mutation in the TCA cycle enzyme complex, succinate dehydrogenase (SDH) in paraganglioma (PGL), it has become clear that some cells and tissues are not only able to survive with a truncated TCA cycle, but that they are also able of supporting proliferative phenotype observed in tumours. Here, we show that loss of SDH activity leads to changes in the metabolism of non-essential amino acids. In particular, we demonstrate that pyruvate carboxylase is essential to re-supply the depleted pool of aspartate in SDH-deficient cells. Our results demonstrate that the loss of SDH reduces the metabolic plasticity of cells, suggesting vulnerabilities that can be targeted therapeutically.
Pancreatic ductal adenocarcinoma (PDAC) evolves a complex microenvironment comprised of multiple cell types, including pancreatic stellate cells (PSC). Previous studies have demonstrated that stromal supply of alanine, lipids, and nucleotides supports the metabolism, growth, and therapeutic resistance of PDAC. Here we demonstrate that alanine crosstalk between PSCs and PDAC is orchestrated by the utilization of specifi c transporters. PSCs utilize SLC1A4 and other transporters to rapidly exchange and maintain environmental alanine concentrations. Moreover, PDAC cells upregulate SLC38A2 to supply their increased alanine demand. Cells lacking SLC38A2 fail to concentrate intracellular alanine and undergo a profound metabolic crisis resulting in markedly impaired tumor growth. Our results demonstrate that stromal-cancer metabolic niches can form through differential transporter expression, creating unique therapeutic opportunities to target metabolic demands of cancer. SIGnIFICAnCE: This work identifi es critical neutral amino acid transporters involved in channeling alanine between pancreatic stellate and PDAC cells. Targeting PDAC-specifi c alanine uptake results in a metabolic crisis impairing metabolism, proliferation, and tumor growth. PDAC cells specifi cally activate and require SLC38A2 to fuel their alanine demands that may be exploited therapeutically.
SummarySince the discovery of mutations in isocitrate dehydrogenase 1 (IDH1) in gliomas and other tumors, significant efforts have been made to gain a deeper understanding of the consequences of this oncogenic mutation. One aspect of the neomorphic function of the IDH1 R132H enzyme that has received less attention is the perturbation of cellular redox homeostasis. Here, we describe a biosynthetic pathway exhibited by cells expressing mutant IDH1. By virtue of a change in cellular redox homeostasis, IDH1-mutated cells synthesize excess glutamine-derived proline through enhanced activity of pyrroline 5-carboxylate reductase 1 (PYCR1), coupled to NADH oxidation. Enhanced proline biosynthesis partially uncouples the electron transport chain from tricarboxylic acid (TCA) cycle activity through the maintenance of a lower NADH/NAD+ ratio and subsequent reduction in oxygen consumption. Thus, we have uncovered a mechanism by which tumor cell survival may be promoted in conditions associated with perturbed redox homeostasis, as occurs in IDH1-mutated glioma.
SUMMARY Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive fibrosis and hypovascularization, resulting in significant intratumoral hypoxia (low oxygen) that contributes to its aggressiveness, therapeutic resistance, and high mortality. Despite oxygen being a fundamental requirement for many cellular and metabolic processes, and the severity of hypoxia in PDAC, the impact of oxygen deprivation on PDAC biology is poorly understood. Investigating how PDAC cells survive in the near absence of oxygen, we find that PDAC cell lines grow robustly in oxygen tensions down to 0.1%, maintaining mitochondrial morphology, membrane potential, and the oxidative metabolic activity required for the synthesis of key metabolites for proliferation. Disrupting electron transfer efficiency by targeting mitochondrial respiratory supercomplex assembly specifically affects hypoxic PDAC proliferation, metabolism, and in vivo tumor growth. Collectively, our results identify a mechanism that enables PDAC cells to thrive in severe, oxygen-limited microenvironments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.