The aims of this study were to determine the extent and distribution of an OSPAR priority habitat under current baseline ocean temperatures; to illustrate the prospect for habitat loss under a changing ocean temperature scenario; and to demonstrate the potential application of predictive habitat mapping in “future-proofing” conservation and biodiversity management.Maxent modelling and GIS environmental envelope analysis of the biogenic bed forming species, Modiolus modiolus was carried out. The Maxent model was tested and validated using 75%/25% training/test occurrence records and validated against two sampling biases (the whole study area and a 20km buffer). The model was compared to the envelope analysis and the area under the receiver operating characteristic curve (Area Under the curve; AUC) was evaluated.The performance of the Maxent model was rated as ‘good’ to ‘excellent’ on all replicated runs and low variation in the runs was recorded from the AUC values. The extent of “most suitable”, “less suitable” and “unsuitable” habitat was calculated for the baseline year (2009) and the projected increased ocean temperature scenarios (2030, 2050, 2080 and 2100). A loss of 100% of “most suitable” habitat was reported by 2080.Maintaining a suitable level of protection of marine habitats/species of conservation importance may require management of the decline and migration rather than maintenance of present extent. Methods applied in this study provide the initial application of a plausible “conservation management tool”.
There has been increasing international effort to better understand the diversity and quality of marine natural capital, ecosystem services and their associated societal benefits. However, there is an evidence gap as to how these benefits are identified at the local scale, where benefits are provided and to whom, trade-offs in development decisions, and understanding how benefits support wellbeing. Often the benefits of conservation are poorly understood at the local scale, are not effectively integrated into policy and are rarely included meaningfully in public discourse. This paper addresses this disjuncture and responds to the demand for improving dialogue with local communities and stakeholders. Participatory GIS mapping is used as a direct means of co-producing knowledge with stakeholder and community interests. This paper drives a shift from development of participatory approaches to adaptive applications in real-world case studies of local, national and international policy relevance. The results from four sites along the UK North Sea coast are presented. This paper showcases a robust stakeholder-driven approach that can be used to inform marine planning, conservation management and coastal development. Although the demonstration sites are UKfocused, the methodology presented is of global significance and can be applied across spatial and temporal scales.
Abstract:In the UK, some of the oldest oil and gas installations have been in the water for over 40 years and have considerable colonisation by marine organisms, which may lead to both industry challenges and/or potential biodiversity benefits (e.g., artificial reefs). The project objective was to test the use of an automated image analysis software (CoralNet) on images of marine biofouling from offshore platforms on the UK continental shelf, with the aim of (i) training the software to identify the main marine biofouling organisms on UK platforms; (ii) testing the software performance on 3 platforms under 3 different analysis criteria (methods A-C); (iii) calculating the percentage cover of marine biofouling organisms and (iv) providing recommendations to industry. Following software training with 857 images, and testing of three platforms, results showed that diversity of the three platforms ranged from low (in the central North Sea) to moderate (in the northern North Sea). The two central North Sea platforms were dominated by the plumose anemone Metridium dianthus; and the northern North Sea platform showed less obvious species domination. Three different analysis criteria were created, where the method of selection of points, number of points assessed and confidence level thresholds (CT) varied: (method A) random selection of 20 points with CT 80%, (method B) stratified random of 50 points with CT of 90% and (method C) a grid approach of 100 points with CT of 90%. Performed across the three platforms, the results showed that there were no significant differences across the majority of species and comparison pairs. No significant difference (across all species) was noted between confirmed annotations methods (A, B and C). It was considered that the software performed well for the classification of the main fouling species in the North Sea. Overall, the study showed that the use of automated image analysis software may enable a more efficient and consistent approach to marine biofouling analysis on offshore structures; enabling the collection of environmental data for decommissioning and other operational industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.