We offer a perspective on recent advances in picosecond-timescale all-optical switching with applications in quantum optics. The switch is based on polarization rotation in standard single-mode fiber via the optical Kerr effect. By using ultrafast laser pulses and short (∼10 cm) fibers, this technique can achieve a switching duration of ≲1 ps, at the repetition rate of 80 MHz or above. This high repetition rate is well-suited to quantum optics where experiments operate in the photon-counting regime. The switch efficiency can be ≳99% with a noise floor of just ∼10−4 photons/pulse, enabling high fidelity operations on quantum states of light, with negligible generation of spurious noise photons. We highlight the capabilities of this technique in four early applications: switching of heralded single photons, time-bin to polarization conversion of photonic qubits, noise gating for quantum key distribution, and pulse carving.
Wavelength-tunable, time-locked pairs of ultrafast pulses are crucial in modern-day time-resolved measurements. We demonstrate a simple means of generating configurable optical pulse sequences: sub-picosecond pulses are carved out from a continuous wave laser via pump-induced optical Kerr switching in 10 cm of a commercial single-mode fiber. By introducing dispersion to the pump, the near transform-limited switched pulse duration is tuned between 305–570 fs. Two- and four-pulse signal trains are also generated by adding birefringent α-BBO plates in the pump beam. These results highlight an ultrafast light source with intrinsic timing stability and pulse-to-pulse phase coherence, where pulse generation could be adapted to wavelengths ranging from ultraviolet to infrared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.