Background There is need to consider the value of soft intelligence, leveraged using accessible natural language processing (NLP) tools, as a source of analyzed evidence to support public health research outputs and decision-making. Objective The aim of this study was to explore the value of soft intelligence analyzed using NLP. As a case study, we selected and used a commercially available NLP platform to identify, collect, and interrogate a large collection of UK tweets relating to mental health during the COVID-19 pandemic. Methods A search strategy comprised of a list of terms related to mental health, COVID-19, and lockdown restrictions was developed to prospectively collate relevant tweets via Twitter’s advanced search application programming interface over a 24-week period. We deployed a readily and commercially available NLP platform to explore tweet frequency and sentiment across the United Kingdom and identify key topics of discussion. A series of keyword filters were used to clean the initial data retrieved and also set up to track specific mental health problems. All collated tweets were anonymized. Results We identified and analyzed 286,902 tweets posted from UK user accounts from July 23, 2020 to January 6, 2021. The average sentiment score was 50%, suggesting overall neutral sentiment across all tweets over the study period. Major fluctuations in volume (between 12,622 and 51,340) and sentiment (between 25% and 49%) appeared to coincide with key changes to any local and/or national social distancing measures. Tweets around mental health were polarizing, discussed with both positive and negative sentiment. Key topics of consistent discussion over the study period included the impact of the pandemic on people’s mental health (both positively and negatively), fear and anxiety over lockdowns, and anger and mistrust toward the government. Conclusions Using an NLP platform, we were able to rapidly mine and analyze emerging health-related insights from UK tweets into how the pandemic may be impacting people’s mental health and well-being. This type of real-time analyzed evidence could act as a useful intelligence source that agencies, local leaders, and health care decision makers can potentially draw from, particularly during a health crisis.
IntroductionIn areas where public confidence is low and there is a lack of understanding around behaviors, such as COVID-19 vaccine hesitancy, there is a need to explore novel sources of evidence. When leveraged using artificial intelligence (AI) techniques, social media data may offer rich insights into public concerns around vaccination. Currently, sources of ‘soft-intelligence’ are underutilized by policy makers, health technology assessment (HTA) and other public health research agencies. In this work, we used an AI platform to rapidly detect and analyze key barriers to vaccine uptake from a sample of geo-located tweets.MethodsAn AI-based tool was deployed using a robust search strategy to capture tweets associated with COVID-19 vaccination, posted from users in London, United Kingdom. The tool’s algorithm automatically clustered tweets based on key topics of discussion and sentiment. Tweets contained within the 12 most populated topics with negative sentiment were extracted. The extracted tweets were mapped to one of six pre-determined themes (safety, mistrust, under-representation, complacency, ineffectiveness, and access) informed using the World Health Organization’s 3Cs vaccine hesitancy model. All collated tweets were anonymized.ResultsWe identified 91,473 tweets posted between 30 November 2020 and 15 August 2021. A sample of 913 tweets were extracted from the twelve negative topic clusters. Of these, 302 tweets were coded to a vaccine hesitancy theme. ‘Safety’ (29%) and ‘mistrust’ (23%) were the most commonly coded themes; the least commonly coded was ‘under-representation’ (3%). Within the main themes, adverse reactions, inadequate assessment, and rushed development of the vaccines as key findings. Our analysis also revealed widespread sharing of misinformation.ConclusionsUsing an AI-based text analytics tool, we were able to rapidly assess public confidence in COVID-19 vaccination and identify key barriers to uptake from a corpus of geo-located tweets. Our findings support a growing body of evidence and confidence surrounding the use of AI tools to efficiently analyze early sources of soft-intelligence evidence in public health research.
BACKGROUND There is increasing need to explore the value of soft-intelligence, leveraged using the latest artificial intelligence (AI) and natural language processing (NLP) techniques, as a source of analysed evidence to support public health research activity and decision-making. OBJECTIVE The aim of this study was to further explore the value of soft-intelligence analysed using AI through a case study, which examined a large collection of UK tweets relating to mental health during the COVID-19 pandemic. METHODS A search strategy comprising a list of terms related to mental health, COVID-19, and lockdown restrictions was developed to prospectively collate relevant tweets via Twitter’s advanced search application programming interface over a 24-week period. We deployed a specialist NLP platform to explore tweet frequency and sentiment across the UK and identify key topics of discussion. A series of keyword filters were used to clean the initial data retrieved and also set up to track specific mental health problems. Qualitative document analysis was carried out to further explore and expand upon the results generated by the NLP platform. All collated tweets were anonymised RESULTS We identified and analysed 286,902 tweets posted from UK user accounts from 23 July 2020 to 6 January 2021. The average sentiment score was 50%, suggesting overall neutral sentiment across all tweets over the study period. Major fluctuations in volume and sentiment appeared to coincide with key changes to any local and/or national social-distancing measures. Tweets around mental health were polarising, discussed with both positive and negative sentiment. Key topics of consistent discussion over the study period included the impact of the pandemic on people’s mental health (both positively and negatively), fear and anxiety over lockdowns, and anger and mistrust toward the government. CONCLUSIONS Through the primary use of an AI-based NLP platform, we were able to rapidly mine and analyse emerging health-related insights from UK tweets into how the pandemic may be impacting people’s mental health and well-being. This type of real-time analysed evidence could act as a useful intelligence source that agencies, local leaders, and health care decision makers can potentially draw from, particularly during a health crisis.
BACKGROUND Health technology innovation is increasingly supported by a bottom-up approach to priority setting, aiming to better reflect the concerns of its intended beneficiar-ies. Online forums provide parents with an outlet to share concerns, advice, and information related to parenting and the health and wellbeing of their children. They provide a rich source of data on parenting concerns and priorities that could inform future child health research and innovation. OBJECTIVE To identify common concerns expressed on two major online forums and cluster these to identify potential family health concern topics as indicative priority areas for future research and innovation. METHODS We text-mined the r/Parenting subreddit (69846 posts) and the parenting section of Mumsnet (99848 posts) to create a large corpus of posts. A generative statistical model (latent Dirichlet allocation – LDA) was used to identify the most discussed topics in the corpus and content analysis applied to identify the parenting concerns found in a subset of posts. RESULTS A model with 25 topics produced the highest coherence and a wide range of mean-ingful parenting concern topics. The most frequently expressed parenting concerns related to their child’s sleep, self-care, eating (and food), behavior, child-care con-text, and the parental context including parental conflict. Topics directly associated with infants, such as potty training and bottle feeding, were more common on Mumsnet, while parental context and screen time were more common on r/Parenting. CONCLUSIONS LDA topic modelling can be applied to gain a rapid, yet meaningful overview of parent concerns expressed on a large and diverse set of social media posts and used to complement traditional insight gathering methods. Parents framed their concerns in terms of children’s everyday health concerns, generating topics that overlap significantly with established family health concern topics. We provide evi-dence of the range of family health concerns found at these sources and hope this can be used to generate material for use alongside traditional insight gathering methods.
IntroductionThere is increasing pressure to rapidly shape policies and inform decision-making where robust evidence is lacking. This work aimed to explore the value of soft-intelligence as a novel source of evidence. We deployed an artificial intelligence based natural language platform to identify and analyze a large collection of UK tweets relating to mental health during the COVID-19 pandemic.MethodsA search strategy comprising a list of terms relating to mental health, COVID-19 and the lockdown was developed to prospectively identify relevant tweets via Twitter's advanced search application programming interface. We used a specialist text analytics platform to explore tweet frequency and sentiment across the UK and identify key topics of discussion for qualitative analysis. All collated tweets were anonymized.ResultsWe identified 380,728 tweets from 184,289 unique users in the UK from 30 April to 4 July 2020. The average sentiment score was fifty-two percent, suggesting overall positive sentiment. Tweets around mental health were polarizing, discussed with both positive and negative sentiment. For example, some people described how they were using the lockdown as a positive opportunity to work on their mental health, sharing helpful strategies to support others. However, many people expressed the damaging impact the pandemic (and resulting lockdown) was having on their mental health, including worsening anxiety, stress, depression, and loneliness.ConclusionsThe results suggest that soft-intelligence is potentially a useful source of evidence. The approach taken to identify and analyze this data may offer an efficient means of establishing key insights from the ‘public voice’ relating to critical health issues. However, there are still various limitations to consider concerning the technology and representativeness of the data. Future work to explore this type of evidence further, and how it might formally support decision-making processes, is recommended.This project is funded by the NIHR [(HSRIC-2016-10009)/Innovation Observatory]. The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.