Abstract-The (pro)renin receptor [(P)RR] is implicated in organ pathology. We examined the cellular location of the (P)RR and whether a putative (P)RR antagonist, RILLKKMPSV, corresponding to the handle region of the prorenin prosegment (handle region peptide [HRP]) influences angiogenesis, inflammation, and neuronal and glial function in rat retina. The (P)RR was localized to retinal vessels, endothelial cells, and pericytes, but most immunolabeling was in ganglion cells and glia. HRP (1 mg/kg per day by IP injection) reduced physiological angiogenesis in developing retina. Moreover, HRP (0.1 mg/kg per day by subcutaneous minipump) reduced pathological retinal angiogenesis, inflammation, and vascular endothelial growth factor and intercellular adhesion molecule-1 mRNA in rats with oxygen-induced retinopathy (OIR) to an extent similar to valsartan (10 mg/kg per day, IP). In contrast to its effects on vasculature, HRP compromised the electroretinogram in shams and OIR and increased phosphorylated extracellular-signal-related protein kinase 1/2 immunolabeling in shams but not in OIR, whereas valsartan did not affect the electroretinogram and reduced extracellular-signal-related protein kinase 1/2 immunolabeling in OIR. Retinal (P)RR mRNA levels were increased in OIR; HRP, but not valsartan, increased (P)RR mRNA levels in shams, whereas both HRP and valsartan reduced (P)RR mRNA levels in OIR. A control peptide (VSPMKKLLIR, 0.1 mg/kg per day) did not influence retinal vasculopathy or function. Circulating HRP levels in rats administered 1 mg/kg per day HRP were undetectable (Ͻ3 pmol/L). We conclude that HRP had protective effects on the retinal vasculature similar to those of valsartan; however, unlike valsartan, HRP injured neuro-glia, which may involve the (P)RR, although the undetectable circulating HRP level makes a direct effect of HRP on retinal (P)RR function unlikely.
Retinopathy of prematurity is a devastating vascular disease of premature infants. A number of studies indicate that retinal function is affected in this disease. Using the rat model of oxygen-induced retinopathy, it is possible to explore more fully the complex relationship between neuronal, glial and vascular pathology in this condition. This review examines the structural and functional changes that occur in the rat retina following oxygen-induced retinopathy. We highlight that vascular pathology in rats is characterized by aberrant growth of blood vessels into the vitreous at the expense of blood vessel growth into the body of the retina. Moreover, amino acid neurochemistry, a tool for examining neuronal changes in a spatially complete manner reveals widespread changes in amacrine and bipolar cells. In addition, neurochemical anomalies within inner retinal neurons are highly correlated with the absence of retinal vessels. The key cell types that link blood flow with neuronal function are macroglia. Macroglia cells, which in the retina include astrocytes and Müller cells, are affected by oxygen-induced retinopathy. Astrocyte loss occurs in the peripheral retina, while Müller cells show signs of reactive gliosis that is highly localized to regions that are devoid of intraretinal blood vessels. Finally, we propose that treatments, such as blockade of the renin-angiotensin system, that not only targets pathological angiogenesis, but that also promotes re-vascularization of the retina are likely to prove important in the treatment of those with retinopathy of prematurity.
Retinopathy of prematurity (ROP) is characterized by deficits in the scotopic pathway, although the cellular locus for these deficits is not clear. Here we examined neurochemical and cellular changes that develop during oxygen-induced retinopathy, a model of ROP. In addition, we examined whether treatment with the angiotensin II type-1 receptor inhibitor, valsartan, prevented these changes. Newborn Sprague-Dawley rats were exposed from postnatal day (P) 0 to 11 to 80%:20% O(2) (22:2 hr/day) and then room air until P18. Valsartan (40 mg/kg/day) was administered from P12-P18. Pattern recognition analysis of overlapping amino acid profiles was used to provide a statistically robust and spatially complete classification of neural elements for each experimental condition. Classification yielded 12 neuronal theme classes in controls and nine classes following ROP. ROP was associated with a reduction in the number of amacrine and bipolar cell theme classes. The reduction in theme classes was confirmed as true neuronal loss by quantifying anatomical changes and using an apoptotic marker. ROP was associated with shifts in amino acid levels across all neuronal populations except for horizontal cells. A reduction in the density of glycine-immunoreactive amacrine cells, and particularly parvalbumin-immunoreactive AII amacrine cells, was observed following ROP. Valsartan treatment during ROP prevented loss of theme classes and loss of AII amacrine cells. This study suggests that deficits in scotopic vision during ROP may be associated with loss of AII amacrine cells. In addition, this study highlights the potential of AT(1)R blockade in preventing neuronal anomalies in this condition.
Retinal vascular diseases such as diabetic retinopathy and retinopathy of prematurity are major causes of visual loss. Although the focus of a great deal of research has been on the aetiology of vascular growth, it is now emerging that anomalies in other retinal cell types, especially glial cells, occur very early in the course of the disease. Glial cells have major roles in every stage of disease, from the earliest subtle variations in neural function, to the development of epi‐retinal membranes and tractional detachment. Therefore, having a firm understanding of the function of retinal glia is important in our understanding of retinal disease and is crucial for the development of new treatment strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.