Objective
In this study we modeled repetitive motion strain (RMS) and myofascial release (MFR) in vitro to investigate possible cellular and molecular mechanisms to potentially explain the immediate clinical outcomes associated with RMS and MFR.
Method
Cultured human fibroblasts were strained with 8 hours RMS, 60 seconds MFR and combined treatment; RMS+MFR. Fibroblasts were immediately sampled upon cessation of strain and evaluated for cell morphology, cytokine secretions, proliferation, apoptosis, and potential changes to intracellular signaling molecules.
Results
RMS induced fibroblast elongation of lameopodia, cellular decentralization, reduction of cell to cell contact and significant decreases in cell area to perimeter ratios compared to all other experimental groups (p<0.0001). Cellular proliferation indicated no change among any treatment group; however RMS resulted in a significant increase in apoptosis rate (p<0.05) along with increases in death-associated protein kinase (DAPK) and focal adhesion kinase (FAK) phosphorylation by 74% and 58% respectively, when compared to control. These responses were not observed in the MFR and RMS+MFR group. Of the twenty cytokines measured there was a significant increase in GRO secretion in the RMS+MFR group when compared to control and MFR alone.
Conclusion
Our modeled injury (RMS) appropriately displayed enhanced apoptosis activity and loss of intercellular integrity that is consistent with pro-apoptotic DAPK2 and FAK signaling. Treatment with MFR following RMS resulted in normalization in apoptotic rate and cell morphology both consistent with changes observed in DAPK2. These in vitro studies build upon the cellular evidence base needed to fully explain clinical efficacy of manual manipulative therapies.
The 3DFC functions as a cell delivery device providing matrix support for resident cell survival and integration into the heart. The imbedded fibroblasts of the 3DFC release a complex blend of cardioactive cytokines promoting increases in microvessel density and anterior wall blood flow but does not improve ejection fraction or alter LV remodeling.
Despite positive clinical outcomes documented post-treatment with a variety of manual medicine treatments (MMT), the underlying cellular mechanisms responsible remain elusive. We have developed an in vitro human fibroblast cell system used to model various biomechanical strains that human fibroblasts might undergo in response to repetitive motion strain (RMS) and MMT. Our data utilizing this system suggest that RMS induces disruption of cell-cell and cell-matrix contacts, which appear are reversed when a modeled MMT is also added to the treatment protocol. Similarly, while RMS induces secretion of several inflammatory cytokines, modeled MMT attenuates this secretory response. In terms of strain direction, fibroblasts strained equiradially exhibit unique cytokine secretory profiles vs. those strained heterobiaxially. Taken together, these data suggest that this cell model may prove useful in identifying the cellular mechanisms by which various fascial strains used clinically to treat somatic dysfunctions yield positive clinical outcomes such as reduced pain, reduced analgesic use and improved range of motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.