Strong epidemiological data indicate that chemotherapy-induced gut toxicity and pain occur in parallel, indicating common underlying mechanisms. We have recently outlined evidence suggesting that TLR4 signaling may contribute to both side effects. We therefore aimed to determine if genetic deletion of TLR4 improves chemotherapy-induced gut toxicity and pain. Forty-two female wild-type (WT) and 42 Tlr4 null (−/−) BALB/c mice weighing between 18 and 25 g (10–13 weeks) received a single 270 mg/kg (i.p.) dose of irinotecan hydrochloride or vehicle control and were killed at 6, 24, 48, 72, and 96 hours. Bacterial sequencing was conducted on cecal samples of control animals to determine the gut microbiome profile. Gut toxicity was assessed using validated clinical and histopathologic markers, permeability assays, and inflammatory markers. Chemotherapy-induced pain was assessed using the validated rodent facial grimace criteria, as well as immunologic markers of glial activation in the lumbar spinal cord. TLR4 deletion attenuated irinotecan-induced gut toxicity, with improvements in weight loss (P = 0.0003) and diarrhea (P < 0.0001). Crypt apoptosis was significantly decreased in BALB/c-Tlr4−/−billy mice (P < 0.0001), correlating with lower mucosal injury scores (P < 0.005). Intestinal permeability to FITC-dextran (4 kDa) and LPS translocation was greater in WT mice than in BALB/c-Tlr4−/−billy (P = 0.01 and P < 0.0001, respectively). GFAP staining in the lumbar spinal cord, indicative of astrocytic activation, was increased at 6 and 72 hours in WT mice compared with BALB/c-Tlr4−/−billy mice (P = 0.008, P = 0.01). These data indicate that TLR4 is uniquely positioned to mediate irinotecan-induced gut toxicity and pain, highlighting the possibility of a targetable gut/CNS axis for improved toxicity outcomes. Mol Cancer Ther; 15(6); 1376–86. ©2016 AACR.
FMT has gained enormous momentum in the treatment of acute inflammatory and infectious diseases. Despite an encouraging safety profile, FMT has been met with caution in the oncological setting due to perceived infectious risks in immunocompromised patients. Theoretical risks aside, the application of FMT in oncology may stand to benefit patients, via modulation of treatment efficacy and the mitigation of treatment complications. Here, we summarize most recent safety data of FMT in immunocompromised cohorts, including people with cancer, highlighting that FMT may actually provide protection against bacterial translocation via introduction of a diverse microbiome and restoration of epithelial defenses. We also discuss the emerging translational applications of FMT within supportive oncology, including the prevention and treatment of graft vs. host disease and sepsis, treatment of immunotherapy-induced colitis and restoration of the gut microbiome in survivors of childhood cancer.
Dacomitinib-an irreversible pan-ErbB tyrosine kinase inhibitor (TKI)-causes diarrhoea in 75% of patients. Dacomitinib-induced diarrhoea has not previously been investigated and the mechanisms remain poorly understood. The present study aimed to develop an in-vitro and in-vivo model of dacomitinib-induced diarrhoea to investigate underlying mechanisms. T84 cells were treated with 1-4 μM dacomitinib and resistance and viability were measured using transepithelial electrical resistance (TEER) and XTT assays. Rats were treated with 7.5 mg/kg dacomitinib daily via oral gavage for 7 or 21 days (n = 6/group). Weights, and diarrhoea incidence were recorded daily. Rats were administered FITC-dextran 2 hr before cull, and serum levels of FITC-dextran were measured and serum biochemistry analysis was conducted. Detailed histopathological analysis was conducted throughout the gastrointestinal tract. Gastrointestinal expression of ErbB1, ErbB2 and ErbB4 was analysed using RT-PCR. The ileum and the colon were analysed using multiplex for expression of various cytokines. T84 cells treated with dacomitinib showed no alteration in TEER or cell viability. Rats treated with dacomitinib developed severe diarrhoea, and had significantly lower weight gain. Further, dacomitinib treatment led to severe histopathological injury localised to the ileum. This damage coincided with increased levels of MCP1 in the ileum, and preferential expression of ErbB1 in this region compared to all other regions. This study showed dacomitinib induces severe ileal damage accompanied by increased MCP1 expression, and gastrointestinal permeability in rats. The histological changes were most pronounced in the ileum, which was also the region with the highest relative expression of ErbB1.
We have previously shown increased intestinal permeability, to 4-kDa FITC-dextran, in BALB/c mice treated with irinotecan. Importantly, genetic deletion of Toll-like receptor 4 (TLR4; Tlr4−/−) protected against loss of barrier function, indicating that TLR4 is critical in tight junction regulation. The current study aimed (i) to determine the molecular characteristics of intestinal tight junctions in wild-type and Tlr4−/− BALB/c mice and (ii) to characterize the secretory profile of the distal colon. Forty-two female wild-type and 42 Tlr4−/− BALB/c mice weighing between 18 and 25 g received a single 270 mg/kg [intraperitoneal (i.p.)] dose of irinotecan hydrochloride or vehicle control and were killed at 6, 24, 48, 72, and 96 hours. The secretory profile of the distal colon, following carbachol and forksolin, was assessed using Ussing chambers at all time points. Tight junction integrity was assessed at 24 hours, when peak intestinal permeability and diarrhea were reported, using immunofluorescence, Western blotting, and RT-PCR. Irinotecan caused internalization of claudin-1 with focal lesions of ZO-1 and occludin proteolysis in the ileum and colon of wild-type mice. Tlr4−/− mice maintained phenotypically normal tight junctions. Baseline conductance, a measure of paracellular permeability, was increased in irinotecan-treated wild-type mice at 24 hours (53.19 ± 6.46 S/cm2; P = 0.0008). No change was seen in Tlr4−/− mice. Increased carbachol-induced chloride secretion was seen in irinotecan-treated wild-type and Tlr4−/− mice at 24 hours (wild-type: 100.35 ± 18.37 μA/cm2; P = 0.022; Tlr4−/−: 102.72 ± 18.80 μA/cm2; P = 0.023). Results suggest that TLR4-dependent claudin-1 internalization and secondary anion secretion contribute to irinotecan-induced diarrhea. Mol Cancer Ther; 15(11); 2767–79. ©2016 AACR.
Chemotherapy-induced gastrointestinal toxicity (CIGT) occurs in up to 80% of all patients undergoing cancer treatment, and leads to symptoms such as diarrhoea, abdominal bleeding and pain. There is currently limited understanding of how to predict an individual patient's risk of CIGT. It is believed the gut microbiome and its interactions with the host's innate immune system plays a key role in the development of this toxicity and potentially other toxicities, however comprehensive bioinformatics modelling has not been rigorously performed. The innate immune system is strongly influenced by the microbial environment and vice-versa. Ways this may occur include the immune system controlling composition and compartmentalisation of the microbiome, the microbiome affecting development of antigen-presenting cells, and finally, the NLRP6 inflammasome orchestrating the colonic host-microbiome interface. This evidence calls into question the role of pre-treatment risk factors in the development of gastrointestinal toxicity after chemotherapy. This review aims to examine evidence of a bidirectional interaction between the gut microbiome and innate immunity, and how these interactions occur in CIGT. In the future, knowledge of these interactions may lead to improved personalised cancer medicine, predictive risk stratification methods and the development of targeted interventions to reduce, or even prevent, CIGT severity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.