Capsaicin, the main pungent ingredient in "hot" chili peppers, elicits buming pain by activating specific (vanilloid) receptors on sensory nerve endings. The cloned vanilloid receptor (VR1) is a cation channel that is also activated by noxious heat. Here, analysis of heat-evoked single channel currents in excised membrane patches suggests that heat gates VR1 directly. We also show that protons decrease the temperature threshold for VR1 activation such that even moderately acidic conditions (pH < or = 5.9) activate VR1 at room temperature. VR1 can therefore be viewed as a molecular integrator of chemical and physical stimuli that elicit pain. Immunocytochemical analysis indicates that the receptor is located in a neurochemically heterogeneous population of small diameter primary afferent fibers. A role for VR1 in injury-induced hypersensitivity at the level of the sensory neuron is presented.
Protein kinase C ␥ (PKC␥), which is concentrated in interneurons of the inner part of lamina II of the dorsal horn, has been implicated in injury-induced allodynia, a condition wherein pain is produced by innocuous stimuli. Although it is generally assumed that these interneurons receive input from the nonpeptidergic, IB4-positive subset of nociceptors, the fact that PKC␥ cells do not express Fos in response to noxious stimulation suggests otherwise. Here, we demonstrate that the terminal field of the nonpeptidergic population of nociceptors, in fact, lies dorsal to that of PKC␥ interneurons. There was also no overlap between the PKC␥-expressing interneurons and the transganglionic tracer wheat germ agglutinin which, after sciatic nerve injection, labels all unmyelinated nociceptors. However, transganglionic transport of the -subunit of cholera toxin, which marks the medium-diameter and large-diameter myelinated afferents that transmit non-noxious information, revealed extensive overlap with the layer of PKC␥ interneurons. Furthermore, expression of a transneuronal tracer in myelinated afferents resulted in labeling of PKC␥ interneurons. Light and electron microscopic double labeling further showed that the VGLUT1 subtype of vesicular glutamate transmitter, which is expressed in myelinated afferents, marks synapses that are presynaptic to the PKC␥ interneurons. Finally, we demonstrate that a continuous non-noxious input, generated by walking on a rotarod, induces Fos in the PKC␥ interneurons. These results establish that PKC␥ interneurons are activated by myelinated afferents that respond to innocuous stimuli, which suggests that injury-induced mechanical allodynia is transmitted through a circuit that involves PKC␥ interneurons and non-nociceptive, VGLUT1-expressing myelinated primary afferents.
Agonists at serotonin 1D (5-HT1D) receptors relieve migraine headache but are not clinically used as general analgesics. One possible explanation for this difference is that 5-HT1D receptors are preferentially expressed by cranial afferents of the trigeminal system. We compared the distribution of 5-HT1D receptor-immunoreactive (5-HT1D-IR) peripheral afferents within the trigeminal ganglion (TRG) and lumbar dorsal root ganglion (DRG) of the rat. We also examined the neurochemical identity of 5-HT1D-IR neurons with markers of primary afferent nociceptors, peripherin, isolectin B4, and substance P, and markers of myelinated afferents, N52 and SSEA3. We observed a striking similarity in the size, distribution, and neurochemical identity of 5-HT1D-IR neurons in TRG and lumbar DRG afferents. Furthermore, the vast majority of 5-HT1D-IR neurons are unmyelinated peptidergic afferents that distribute peripherally, including the dura, cornea, and the sciatic nerve. In the central projections of these afferents within the trigeminal nucleus caudalis and the spinal cord dorsal horn, 5-HT1D-IR fibers are concentrated in laminas I and outer II; a few axons penetrate to lamina V. At the ultrastructural level, 5-HT1D receptors in the spinal cord dorsal horn are localized exclusively within dense core vesicles of synaptic terminals. We observed scattered 5-HT1D-IR neurons in the nodose ganglia, and there was sparse terminal immunoreactivity in the solitary nucleus. The visceral efferents of the superior cervical ganglia did not contain 5-HT1D immunoreactivity. Our finding, that 5-HT1D receptors are distributed in nociceptors throughout the body, raises the possibility that triptans can regulate not only headache-associated pain but also nociceptive responses in extracranial tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.