We use a large laboratory, modeling, and field dataset to investigate the isoprene + O3 reaction, with the goal of better understanding the fates of the C1 and C4 Criegee intermediates in the atmosphere.
Abstract. Organosulfates are components of secondary organic aerosols (SOA) that form from oxidation of volatile organic compounds (VOCs) in the presence of sulfate. In this study, the composition and abundance of organosulfates were determined in fine particulate matter (PM2.5) collected from Centreville, AL, during the Southern Oxidant and Aerosol Study (SOAS) in summer 2013. Six organosulfates were quantified using hydrophilic interaction liquid chromatography (HILIC) with triple quadrupole mass spectrometry (TQD) against authentic standards. Among these, the three most abundant species were glycolic acid sulfate (0.5–52.5 ng m−3), lactic acid sulfate (0.5–36.7 ng m−3), and hydroxyacetone sulfate (0.5–14.3 ng m−3). These three species were strongly inter-correlated, suggesting similar precursors and/or formation pathways. Further correlations with sulfate, isoprene, and isoprene oxidation products indicate important roles for these precursors in organosulfate formation in Centreville. Positive filter sampling artifacts associated with these organosulfates due to gas adsorption or reaction of gas phase precursors of organosulfates with sulfuric acid were assessed for a subset of samples and were less than 7.8 % of their PM2.5 concentrations. Together, the quantified organosulfates accounted for < 0.3 % of organic carbon mass in PM2.5. To gain insights into other organosulfates in PM2.5 collected from Centreville, semi-quantitative analysis was employed by way of monitoring characteristic product ions of organosulfates (HSO4− at m∕z 97 and SO4− ⋅ at m∕z 96) and evaluating relative signal strength by HILIC–TQD. Molecular formulas of organosulfates were determined by high-resolution time-of-flight (TOF) mass spectrometry. The major organosulfate signal across all samples corresponded to 2-methyltetrol sulfates, which accounted for 42–62 % of the total bisulfate ion signal. Conversely, glycolic acid sulfate, the most abundant organosulfate quantified in this study, was 0.13–0.57 % of the total bisulfate ion signal. Precursors of m∕z 96 mainly consisted of nitro-oxy organosulfates. Organosulfates identified were mainly associated with biogenic VOC precursors, particularly isoprene and to a lesser extent monoterpenes and 2-methyl-3-buten-2-ol (MBO). While a small number of molecules dominated the total organosulfate signal, a large number of minor species were also present. This study provides insights into the major organosulfate species in the southeastern US, as measured by tandem mass spectrometry that should be targets for future standard development and quantitative analysis.
Aerosol liquid water (ALW) influences aerosol radiative properties and the partitioning of gas-phase water-soluble organic compounds (WSOC g ) to the condensed phase. A recent modeling study drew attention to the anthropogenic nature of ALW in the southeastern United States, where predicted ALW is driven by regional sulfate. Herein, we demonstrate that ALW in the Po Valley, Italy, is also anthropogenic but is driven by locally formed nitrate, illustrating regional differences in the aerosol components responsible for ALW. We present field evidence for the influence of controllable ALW on the lifetimes and atmospheric budgets of reactive organic gases and note the role of ALW in the formation of secondary organic aerosol (SOA). Nitrate is expected to increase in importance due to increased emissions of nitrate precursors, as well as policies aimed at reducing sulfur emissions. We argue that the impacts of increased particulate nitrate in future climate and air quality scenarios may be under predicted because they do not account for the increased potential for SOA formation in nitrate-derived ALW, nor do they account for the impacts of this ALW on reactive gas budgets and gas-phase photochemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.