Our fundamental understanding of proteins and their biological significance has been enhanced by genetic fusion tags, as they provide a convenient method for introducing unique properties to proteins so that they can be examinedin isolation. Commonly used tags satisfy many of the requirements for applications relating to the detection and isolation of proteins from complex samples. However, their utility at low concentration becomes compromised if the binding affinity for a detection or capture reagent is not adequate to produce a stable interaction. Here, we describe HaloTag® (HT7), a genetic fusion tag based on a modified haloalkane dehalogenase designed and engineered to overcome the limitation of affinity tags by forming a high affinity, covalent attachment to a binding ligand. HT7 and its ligand have additional desirable features. The tag is relatively small, monomeric, and structurally compatible with fusion partners, while the ligand is specific, chemically simple, and amenable to modular synthetic design. Taken together, the design features and molecular evolution of HT7 have resulted in a superior alternative to common tags for the overexpression, detection, and isolation of target proteins.
The Leader protein is a defining feature of picornaviruses from the Cardiovirus genus. This protein was recently shown to inhibit cellular nucleocytoplasmic transport through an activity mapped to its zinc-binding region. Here we report the three-dimensional solution structure determined by nuclear magnetic resonance (NMR) spectroscopy of this domain (residues 5-28) from mengovirus. The domain forms a CHCC zincfinger with a fold comprising a b-hairpin followed by a short a-helix that can adopt two different conformations. This structure is divergent from those of other eukaryotic zinc-fingers and instead resembles motifs found in a group of DNA-binding proteins from Archaea.
For protein microarrays, maintaining protein stability during the slide processing steps of washing, drying, and storage is of major concern. Although several studies have focused on the stability of immobilized antibodies in antibody microarrays, studies on protein-protein interaction arrays and enzyme arrays are lacking. In this paper we used five bait-prey protein interaction pairs and three enzymes to optimize the washing, drying, and storage conditions for protein arrays. The protein arrays for the study were fabricated by combining HaloTag technology and cell-free protein expression. The HaloTag technology, in combination with cell-free expression, allowed rapid expression and immobilization of fusion proteins on hydrogel-coated glass slides directly from cell extracts without any prior purification. Experimental results indicate enzyme captured on glass slides undergoes significant loss of activity when washed and spin-dried using only phosphate buffer, as is typically done with antibody arrays. The impact of washing and spin-drying in phosphate buffer on protein-protein interaction arrays was minimal. However, addition of 5% glycerol to the wash buffer helps retain enzyme activity during washing and drying. We observed significant loss of enzyme activity when slides were stored dry at 4 degrees C, however immobilized enzymes remained active for 30 days when stored at -20 degrees C in 50% glycerol. We also found that cell-free extract containing HaloTag-fused enzymes could undergo multiple freeze/thaw cycles without any adverse impact on enzyme activity. The findings indicate that for large ongoing studies, proteins of interest expressed in cell-free extract can be stored at -70 degrees C and repeatedly used to print small batches of protein array slides to be used over a few weeks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.