While the Philadelphia Water Department (PWD) is counting on Green Stormwater Infrastructure (GI) as a key component of its long-term plan for reducing combined sewer overflows, many community stakeholders are also hoping that investment in greening can help meet other ancillary goals, collectively referred to as sustainable redevelopment. This study investigates the challenges associated with implementation of GI in Point Breeze, a residential neighborhood of South Philadelphia. The project team performed a detailed study of physical, social, legal, and economic conditions in the pilot neighborhood over the course of several years, culminating in the development of an agent-based model simulation of GI implementation. The model evaluates a) whether PWD’s GI goals can be met in a timely manner, b) what kinds of assumptions regarding participation would be needed under different theoretical GI policies, and c) the extent to which GI could promote sustainable redevelopment. The model outcomes underscore the importance of private land in helping PWD achieve its GI goals in Point Breeze. Achieving a meaningful density of GI in the neighborhoods most in need of sustainable redevelopment may require new and creative strategies for GI implementation tailored for the types of land present in those particular communities.
This study demonstrates a decision-support framework for planning Green Infrastructure (GI) systems that maximize urban ecosystem services in Camden, NJ. Seven key ecosystem services are evaluated (urban agriculture expansion, combined sewer overflow reduction, heat island reduction, flooding reduction, capacity building/green jobs expansion, fitness expansion, and stress reduction), to produce a normalized value for each service for each drainage sub-basin within the city. Gaps in ecosystem services are then mapped and utilized to geographically prioritize different kinds of multifunctional GI. Conceptual designs are developed for four site typologies: parks, schools, vacant lots, and brownfield sites. For one demonstration site, additional analysis is presented on urban engagement, life cycle cost reduction, and new sources of funding. What results is an integrated, long-term vision where multifunctional GI systems can be readily customized to meet multiple needs within urban communities. This study provides a portable and replicable framework for leveraging the regulatory requirement to manage stormwater to meet broader urban revitalization goals, all through a decentralized network of green infrastructure assets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.