Solution NMR spectroscopy is a well established technique for non-destructive characterization of the structures and conformations of complex oligo- and polysaccharides. One of the key experiments involves the use of 2D TOCSY to collect the 1H spins into groups that can be associated with the individual saccharide units that are present in the molecule under study. It is well known that the magnetization transfer rate through the 1H spin system during the TOCSY spin lock period is sensitive to the intervening 3J(H,H) scalar couplings, and therefore also to the saccharide stereochemistry. Here, we have investigated the potential to extract information on the stereochemistry of hexapyranose monosaccharide units directly from TOCSY spectra. Through a systematic experimental investigation of the magnetization transfer initiated from the anomeric 1H resonance in D-glucose, D-galactose and D-mannose it is shown that a 100 ms spin lock time provides optimal spectroscopic discrimination between these three commonly occurring building blocks. A simple matching scheme is proposed as a new tool for rapid attribution of the TOCSY traces originating from the anomeric 1H resonances towards the underlying monosaccharide type. The scheme appears robust with regard to structural variations and fairly tolerant to incidental overlap. Its application provides useful guidance during the subsequent NMR assignment process, as demonstrated with the PS7F polysaccharide from Streptococcus pneumonia. In addition, we show that our scheme affords a clear-cut distinction between the alpha- and beta-epimers of D-mannose-type units, which can be difficult to discriminate by NMR analysis. Application to the N-glycan 100.2 demonstrates the potential and wide applicability of this new discrimination approach.
The current article reports the design, synthesis and biochemical evaluation of a cyclic bile acid-peptide conjugate as a mimic of the loop-like structure of the measles virus haemagglutinin noose epitope (HNE). This macrocyclic structure was assembled by solid phase synthesis. Scaffold-peptide ring closure was achieved via the introduction of a succinate linker. After disulfide bridge formation with iodine, the desired 14 amino acid cyclic conjugate was obtained with overall yields between 15 and 35%. NMR analysis supports the presence of a helical conformation in the Q384-G388 pentapeptide portion, in agreement with the organisation of this chain in the native protein. The compound was found to have increased biostability compared to stabilised linear peptides, displayed good binding towards monoclonal antibodies known to bind to HNE and thus has potential in an alternative peptide-based measles vaccine.
The present paper introduces the use of a weak cation-exchange/crown ether column in the proteomics field. The 18-crown-6 ether functionality is well-known to selectively complex ammonium and monoalkylammonium ions, which should make this column highly suitable to trap peptides with free alpha-NH(2) or free epsilon-NH(2) groups from lysine side chains. This unique selection mechanism was put to the test in an N-teromics setup which aims for the enrichment of deliberately acetylated protein N-terminal peptides from a serum digest. It was demonstrated that peptides with free alpha-NH(2) groups and peptides with alpha-amino-acetylated groups can be separated from each other using this weak cation-exchange/crown ether column. The peptides of interest, bearing no free primary amines, were found to be significantly enriched in the column's flow through. At the same time a favorable coenrichment of N-glycosylated peptides was observed. To obtain more insight in the contributions of the two distinct column functionalities, i.e., the weak cation exchanger and the crown ether, the experimental data were checked against a theoretical prediction of the outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.