The formation of luminescent supramolecular ternary complexes in water: delayed luminescence sensing of aromatic carboxylates using coordinated unsaturated cationic heptadenatate lanthanide ion complexes.
A series of D3 (Fe(II), Ru(II), Zn(II), Hg(II)) and D2d (Cu(I), Ag(I), Zn(II)) octupolar metal complexes featuring different functionalized bipyridyl ligands has been synthesized, and their thermal, linear (absorption and emission), and nonlinear optical (NLO) properties were determined. Their quadratic NLO susceptibilities were determined by harmonic light scattering at 1.91 microm, and the molecular hyperpolarizability (beta0) values are in the range of 200-657 x 10(-30) esu for octahedral complexes and 70-157 x 10(-30) esu for tetrahedral complexes. The octahedral zinc(II) complex 1 e, which contains a 4,4'-oligophenylenevinylene-functionalized 2,2'-bipyridine, exhibits the highest quadratic hyperpolarizability ever reported for an octupolar derivative (lambdamax=482 nm, beta1.91(1 e)=870 x 10(-30) esu, beta0(1 e)=657 x 10(-30) esu). Herein, we demonstrate that the optical and nonlinear optical (NLO) properties are strongly influenced by the symmetry of the complexes, the nature of the ligands (donor endgroups and pi linkers), and the nature of the metallic centers. For example, the length of the pi-conjugated backbone, the Lewis acidity of the metal ion, and the increase of ligand-to-metal ratio result in a substantial enhancement of beta. The contribution of the metal-to-ligand (MLCT) transition to the molecular hyperpolarizability is also discussed with respect to octahedral d6 complexes (M=Fe, Ru).
Thermally stable dipolar and octupolar (D2d, D3) NLO-phores are readily accessible by combining one, two, or three 4,4'-bis(dialkylaminostyryl)-[2,2']-bipyridyl ligands with zinc(II) salts. The off-resonant beta0 values point out the superiority of octupoles versus dipoles in terms of nonlinearity/transparency tradeoff. The octahedral tris(bipyridyl)zinc(II) complex exhibits a very large beta0 value (241 x 10-30 esu), which is the largest ever reported for octupolar molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.