This study investigated the number of channels needed for maximum speech understanding and sound quality in 30 adult cochlear implant (CI) recipients with perimodiolar electrode arrays verified via imaging to be completely within scala tympani (ST). Performance was assessed using a continuous interleaved sampling (CIS) strategy with 4, 8, 10, and 16 channels and n-of-m with 16 maxima. Listeners were administered auditory tasks of speech understanding [monosyllables, sentences (quiet and +5 dB signal-to-noise ratio, SNR), vowels, consonants], spectral modulation detection, as well as subjective estimates of sound quality. Results were as follows: (1) significant performance gains were observed for speech in quiet (monosyllables and sentences) with 16-as compared to 8-channel CIS, (2) 16 channels in a 16-of-m strategy yielded significantly higher outcomes than 16-channel CIS for sentences in noise (percent correct and subjective sound quality) and spectral modulation detection, (3) 16 channels in a 16-of-m strategy yielded significantly higher outcomes as compared to 8-and 10-channel CIS for monosyllables, sentences (quiet and noise), consonants, spectral modulation detection, and subjective sound quality, (4) 16 versus 8 maxima yielded significantly higher speech recognition for monosyllables and sentences in noise using an n-of-m strategy, and (5) the degree of benefit afforded by 16 versus 8 maxima was inversely correlated with mean electrode-to-modiolus distance. These data demonstrate greater channel independence with perimodiolar electrode arrays as compared to previous studies with straight electrodes and warrant further investigation of the minimum number of maxima and number of channels needed for maximum auditory outcomes. V
Directional microphones significantly improve speech in noise recognition over omnidirectional microphones and allowed for decreased self-perceived listening effort. The dual task used in this study failed to show any differences in listening effort across the experimental conditions and may not be sensitive enough to detect changes in listening effort.
This study investigated the effects of cochlear implant (CI) electrode array type and scalar location on the number of channels available to CI recipients for maximum speech understanding and sound quality. Eighteen post-lingually deafened adult CI recipients participated, including 11 recipients with straight electrode arrays entirely in scala tympani and 7 recipients with translocated precurved electrode arrays. Computerized tomography was used to determine electrode placement and scalar location. In each condition, the number of channels varied from 4 to 22 with equal spatial distribution across the array. Speech recognition (monosyllables, sentences in quiet and in noise), subjective speech sound quality, and closed-set auditory tasks (vowels, consonants, and spectral modulation detection) were measured acutely. Recipients with well-placed straight electrode arrays and translocated precurved electrode arrays performed similarly, demonstrating asymptotic speech recognition scores with 8–10 channels, consistent with the classic literature. This finding contrasts with recent work [Berg, Noble, Dawant, Dwyer, Labadie, and Gifford. (2019). J. Acoust. Soc. Am. 145, 1556–1564] that found precurved electrode arrays well-placed in scala tympani demonstrate continuous performance gains beyond 8–10 channels. Given these results, straight and translocated precurved electrode arrays are theorized to have less channel independence secondary to their placement farther away from neural targets.
This study investigated the number of channels available to cochlear implant (CI) recipients for maximum speech understanding and sound quality for lateral wall electrode arrays—which result in large electrode-to-modiolus distances—featuring the greatest inter-electrode distances (2.1–2.4 mm), the longest active lengths (23.1–26.4 mm), and the fewest number of electrodes commercially available. Participants included ten post-lingually deafened adult CI recipients with MED-EL electrode arrays (FLEX28 and STANDARD) entirely within scala tympani. Electrode placement and scalar location were determined using computerized tomography. The number of channels was varied from 4 to 12 with equal spatial distribution across the array. A continuous interleaved sampling-based strategy was used. Speech recognition, sound quality ratings, and a closed-set vowel recognition task were measured acutely for each electrode condition. Participants did not demonstrate statistically significant differences beyond eight channels at the group level for almost all measures. However, several listeners showed considerable improvements from 8 to 12 channels for speech and sound quality measures. These results suggest that channel interaction caused by the greater electrode-to-modiolus distances of straight electrode arrays could be partially compensated for by a large inter-electrode distance or spacing.
This study investigated the number of channels needed for maximum speech understanding and sound quality in 5 (anticipated n = 10) adult cochlear implant (CI) recipients with mid-scala electrode arrays completely within scala tympani (ST). CI programs with 4–16 active electrodes using a CIS-based strategy were created along with two n-of-m programs (8-of-16 and 12-of-16). Measures of speech understanding and sound quality were assessed. Our hypothesis was that individuals with precurved electrodes localized in ST would have greater channel independence than previous studies demonstrating gains in performance beyond 8 channels. Participants demonstrated performance gains up to 8–10 electrodes for speech recognition and sound quality ratings. Significantly poorer performance was observed using an n-of-m strategy as compared to CIS conditions with 8+ electrodes. These data are in contrast with recent studies for precurved arrays (e.g., Croghan et al., 2017; Berg et al., in review) reporting significant improvement up to 16 to 22 channels. However, the current results are consistent with previous literature (e.g., Fishman et al., 1997; Friesen et al., 2001; Shannon et al., 2011), demonstrating no more than 8–10 independent channels for CI recipients with straight arrays. Implications for device selection and the impact of electrode-to-modiolus distance will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.