CRISPR-Cas systems provide immunity against phages and plasmids in bacteria and archaea. Despite the popularity of CRISPR-Cas9 based genome editing, few endogenous systems have been characterized to date. Here, we sampled 1,262 publically available lactobacilli genomes found them to be enriched with CRISPR-Cas adaptive immunity. While CRISPR-Cas is ubiquitous in some Lactobacillus species, CRISPR-Cas content varies at the strain level in most Lactobacillus species. We identified that Type II is the most abundant type across the genus, with II-A being the most dominant sub-type. We found that many Type II-A systems are actively transcribed, and encode spacers that efficiently provide resistance against plasmid uptake. Analysis of various CRISPR transcripts revealed that guide sequences are highly diverse in terms of crRNA and tracrRNA length and structure. Interference assays revealed highly diverse target PAM sequences. Lastly, we show that these systems can be readily repurposed for self-targeting by expressing an engineered single guide RNA. Our results reveal that Type II-A systems in lactobacilli are naturally active in their native host in terms of expression and efficiently targeting invasive and genomic DNA. Together, these systems increase the possible Cas9 targeting space and provide multiplexing potential in native hosts and heterologous genome editing purpose.
Background Lactobacillus fermentum, a member of the lactic acid bacteria complex, has recently garnered increased attention due to documented antagonistic properties and interest in assessing the probiotic potential of select strains that may provide human health benefits. Here, we genomically characterize L. fermentum using the type strain DSM 20052 as a canonical representative of this species. Results We determined the polished whole genome sequence of this type strain and compared it to 37 available genome sequences within this species. Results reveal genetic diversity across nine clades, with variable content encompassing mobile genetic elements, CRISPR-Cas immune systems and genomic islands, as well as numerous genome rearrangements. Interestingly, we determined a high frequency of occurrence of diverse Type I, II, and III CRISPR-Cas systems in 72% of the genomes, with a high level of strain hypervariability. Conclusions These findings provide a basis for the genetic characterization of L. fermentum strains of scientific and commercial interest. Furthermore, our study enables genomic-informed selection of strains with specific traits for commercial product formulation, and establishes a framework for the functional characterization of features of interest.
The genus Lactobacillus encompasses a diversity of species that occur widely in nature and encode a plethora of metabolic pathways reflecting their adaptation to various ecological niches, including humans, animals, plants and food products. Accordingly, their functional attributes have been exploited industrially and several strains are commonly formulated as probiotics or starter cultures in the food industry. Although divergent evolutionary processes have yielded the acquisition and evolution of specialized functionalities, all Lactobacillus species share a small set of core metabolic properties, including the glycolysis pathway. Thus, the sequences of glycolytic enzymes afford a means to establish phylogenetic groups with the potential to discern species that are too closely related from a 16S rRNA standpoint. Here, we identified and extracted glycolysis enzyme sequences from 52 species, and carried out individual and concatenated phylogenetic analyses. We show that a glycolysis-based phylogenetic tree can robustly segregate lactobacilli into distinct clusters and discern very closely related species. We also compare and contrast evolutionary patterns with genome-wide features and transcriptomic patterns, reflecting genomic drift trends. Overall, results suggest that glycolytic enzymes provide valuable phylogenetic insights and may constitute practical targets for evolutionary studies.
Bifidobacteria are important members of the human gastrointestinal tract that promote the establishment of a healthy microbial consortium in the gut of infants. Recent studies have established that the Bifidobacterium genus is a polymorphic phylogenetic clade, which encompasses a diversity of species and subspecies that encode a broad range of proteins implicated in complex and non-digestible carbohydrate uptake and catabolism, ranging from human breast milk oligosaccharides, to plant fibers. Recent genomic studies have created a need to properly place Bifidobacterium species in a phylogenetic tree. Current approaches, based on core-genome analyses come at the cost of intensive sequencing and demanding analytical processes. Here, we propose a typing method based on sequences of glycolysis genes and the proteins they encode, to provide insights into diversity, typing, and phylogeny in this complex and broad genus. We show that glycolysis genes occur broadly in these genomes, to encode the machinery necessary for the biochemical spine of the cell, and provide a robust phylogenetic marker. Furthermore, glycolytic sequences-based trees are congruent with both the classical 16S rRNA phylogeny, and core genome-based strain clustering. Furthermore, these glycolysis markers can also be used to provide insights into the adaptive evolution of this genus, especially with regards to trends toward a high GC content. This streamlined method may open new avenues for phylogenetic studies on a broad scale, given the widespread occurrence of the glycolysis pathway in bacteria, and the diversity of the sequences they encode.
The food industry faces a 2050 deadline for the advancement and expansion of the food supply chain to support the world's growing population. Improvements are needed across crops, livestock, and microbes to achieve this goal. Since 2005, researchers have been attempting to make the necessary strides to reach this milestone, but attempts have fallen short. With the introduction of clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins, the food production field is now able to achieve some of its most exciting advancements since the Green Revolution. This review introduces the concept of applying CRISPR-Cas technology as a genome-editing tool for use in the food supply chain, focusing on its implementation to date in crop, livestock, and microbe production, advancement of products to market, and regulatory and societal hurdles that need to be overcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.