In this paper, we compare a touch-based human-to-robot command scheme with traditional button commands in a series of human-robot collaborative assembly tasks. We find a mapping between command style and task outcome that depends on task complexity and is influenced by robot "feel." In our direct touch-based scheme, the user commands the robot through direct physical contact by tapping and pushing the robot. With a small, compliant desktop robot and a simple, scripted, bolt insertion task, button commands performed slightly better than direct physical commands in quantitative task performance metrics and qualitative user preference. In a second study with a human-scale, stiffer robot arm, physical commands performed better than button commands in a more complex and less scripted bolt insertion task, which greatly outperformed using buttons in a cooperative positioning task. We conclude that commanding a robot through direct force-transmitting contact can decrease task completion time, aid in teamwork, and improve user experience in appropriately chosen tasks. We achieve our haptic commands using only robot position sensors, demonstrating that direct, intuitive physical command is an option for existing position-controlled industrial robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.