Many promising attributes of ZnO nanoparticles (nZnO) have led to their utilization in numerous electronic devices and biomedical technologies. nZnO fabrication methods can create a variety of intrinsic defects that modulate the properties of nZnO, which can be exploited for various purposes. Here we developed a new synthesis procedure that controls certain defects in pure nZnO that are theorized to contribute to the n-type conductivity of the material. Interestingly, this procedure created defects that reduced the nanoparticle band gap to ~3.1 eV and generated strong emissions in the violet to blue region while minimizing the defects responsible for the more commonly observed broad green emissions. Several characterization techniques including TGA, FT-IR, XPS, TEM, Raman, photoluminescence and ICP-MS were employed to verify the sample purity, assess how modifications in the synthesis procedure affect the various defects states and understand how these alterations impact the physical properties. Since the band gap significantly decreased and a relatively narrow visible emissions band were created by these defects, we investigated utilizing these new nZnO for bio-imaging applications using traditional fluorescent *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.