Abstract-A computer-controlled mechanism that fits a standard ankle-foot prosthesis was designed to capture the absorbed energy in the ankle and delay its release until specific times in the gait cycle. This mechanism used a direct current motor to take up and hold the compression of a carbon-fiber ankle joint. Based on the timing of the contact forces between the foot and the ground, a microprocessor released the spring at preset times later in the gait cycle. This mechanism was added to a Talux prosthetic foot and was employed by a user of a conventional energy-storage ankle-foot prosthesis. His gait was recorded using a motion analysis system. Five settings: 0, 55, 65, 75, and 85 ms delay were tested on separate days, and the standard kinematic and kinetic gait data were recorded. The user reported some settings were more comfortable than others. When these preferences were tested with a randomized doubleblind trial, the preferences were not consistent. A second user showed a preference for the 55 ms delay. The modifications to the device resulted in changes to the gait of the subjects, including increased cadence and kinematics of the unaffected joints and a longer, slower push from the ankle, which was noticed by both of the subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.