Articular cartilage is sensitive to mechanical loading, so increased risk of osteoarthritis in older or obese individuals may be linked to changes in the relationship between cartilage properties and extrinsic joint loads. A positive relationship has been reported between ambulatory loads and cartilage thickness in young individuals, but whether this relationship exists in individuals who are older or obese is unknown. This study examined the relationship between femoral cartilage thickness and load, measured by weight  height and the peak adduction moment, in young normal-weight (28 subjects, age: 28.0 AE 3.8 years, BMI: 21.9 AE 1.9 kg/m 2 ), middle-aged normal-weight (27 subjects, 47.0 AE 6.5 years, 22.7 AE 1.7 kg/m 2 ), young overweight/obese (27 subjects, 28.4 AE 3.6 years, 33.3 AE 4.6 kg/m 2 ), and middle-aged overweight/obese (27 subjects, 45.8 AE 7.2 years, 31.9 AE 4.4 kg/m 2 ) individuals. On the lateral condyle, cartilage thickness was positively correlated with weight  height for all groups (R 2 ¼ 0.26-0.20) except the middle-aged overweight/ obese. On the medial condyle, weight  height was significantly correlated only in young normal-weight subjects (R 2 ¼ 0.19), as was the case for the correlation between adduction moment and medial-lateral thickness ratio (R 2 ¼ 0.20). These results suggest that aging and obesity are both associated with a loss of the positive relationship between cartilage thickness and ambulatory loads, and that the relationship is dependent on the compartment and whether the load is generated by body size or subject-specific gait mechanics. ß
Measures of mean cartilage thickness over predefined regions in the femoral plate using magnetic resonance imaging have provided important insights into the characteristics of knee osteoarthritis (OA), however, this quantification method suffers from the limited ability to detect OA-related differences between knees and loses potentially important information regarding spatial variations in cartilage thickness. The objectives of this study were to develop a new method for analyzing patterns of femoral cartilage thickness and to test the following hypotheses: (1) asymptomatic knees have similar thickness patterns, (2) thickness patterns differ with knee OA, and (3) thickness patterns are more sensitive than mean thicknesses to differences between OA conditions. Bi-orthogonal thickness patterns were extracted from thickness maps of segmented magnetic resonance images in the medial, lateral, and trochlea compartments. Fifty asymptomatic knees were used to develop the method and establish reference asymptomatic patterns. Another subgroup of 20 asymptomatic knees and three subgroups of 20 OA knees each with a Kellgren/Lawrence grade (KLG) of 1, 2, and 3, respectively, were selected for hypotheses testing. The thickness patterns were similar between asymptomatic knees (coefficient of multiple determination between 0.8 and 0.9). The thickness pattern alterations, i.e., the differences between the thickness patterns of an individual knee and reference asymptomatic thickness patterns, increased with increasing OA severity (Kendall correlation between 0.23 and 0.47) and KLG 2 and 3 knees had significantly larger thickness pattern alterations than asymptomatic knees in the three compartments. On average, the number of significant differences detected between the four subgroups was 4.5 times greater with thickness pattern alterations than mean thicknesses. The increase was particularly marked in the medial compartment, where the number of significant differences between subgroups was 10 times greater with thickness pattern alterations than mean thickness measurements. Asymptomatic knees had characteristic regional thickness patterns and these patterns were different in medial OA knees. Assessing the thickness patterns, which account for the spatial variations in cartilage thickness and capture both cartilage thinning and swelling, could enhance the capacity to detect OA-related differences between knees.
While cartilage thickness alterations are a central element of knee osteoarthritis (OA), differences among disease stages are still incompletely understood. This study aimed to quantify the spatial-variations in cartilage thickness using anatomically standardized thickness maps and test if there are characteristic patterns in patients with different stages of medial compartment knee OA. Magnetic resonance images were acquired for 75 non-OA and 100 OA knees of varying severities (Kellgren and Lawrence (KL) scores 1-4). Three-dimensional cartilage models were reconstructed and a shape matching technique was applied to convert the models into two-dimensional anatomically standardized thickness maps. Difference thickness maps and statistical parametric mapping were used to compare the four OA and the non-OA subgroups. This analysis showed distinct thickness patterns for each clinical stage that formed a coherent succession from the non-OA to the KL 4 subgroups. Interestingly, the only significant difference for early stage (KL 1) was thicker femoral cartilage. With increase in disease severity, typical patterns developed, including thinner cartilage in the anterior area of the medial condyle (significant for KL 3 and 4) and thicker cartilage in the posterior area of the medial and lateral condyles (significant for all OA subgroups). The tibial patterns mainly consisted of thinner cartilage for both medial and lateral compartments (significant for KL 2-4). Comparing anatomically standardized maps allowed identifying patterns of thickening and thinning over the entire cartilage surface, consequently improving the characterization of thickness differences associated with OA. The results also highlighted the value of anatomically standardized maps to analyze spatial variations in cartilage thickness. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2442-2451, 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.