Abstract:The essential oils of the fruits and the leaves of pistachio (Pistacia vera L.) were analyzed by GC and GC/MS. Fresh unripe pistachio fruits were richer in essential oil (0.5 %, w/w) than the leaves (0.1 %, w/w). Twenty one compounds were identified in the essential oil of the fruits and the major components were (+)-α-pinene (54.6 %) and terpinolene (31.2 %). The enantiomeric ratio of the major constituents of the essential oil of the fruits was determined using chiral GC/MS and it was found that the (+)/(-)-α-pinene ratio was 99.5:0.5, (+)/(-)-limonene 80:20, (+)/(-)-β-pinene 96:4, and (+)/(-)-α-terpineol 0:100. Thirty three compounds were identified in the essential oil of the leaves and the major components were found to be α-pinene (30.0 %), terpinolene (17.6 %) and bornyl acetate (11.3 %).
BackgroundThe attentional blink (AB) refers to an impairment in detecting the second of two target stimuli presented in close succession in a rapid stream of distractors. Recent studies indicate that the AB results, in part, from distractor suppression mechanisms, that may be mediated by striatal dopamine. Yet, it is currently unclear how distractor suppression ability may contribute to the AB. Here, we examined whether distractor suppression ability is predictive of an individual's AB depth and/or recovery. In addition, we investigated the relationship between individual spontaneous eye blink rate (sEBR), a marker of striatal dopaminergic functioning, and AB performance.Methodology/Principal findingsSubjects were presented with rapid streams of letters containing white distractors, a red T1 and a green T2. T2 was presented either at Lag2, Lag4 or Lag10, and preceded by a distractor that shared the same identity as T2 (T2 primed) or not (T2 not primed). Replicating previous work [1], we found that slow AB recovery (poor T2 performance in Lag4 vs. Lag10) was associated with a failure to inhibit distractors, as indexed by greater positive priming. However, no relationship was observed between a subject's ability to suppress distractors and AB depth (Lag10 vs. Lag2). Moreover, no relationship between sEBR and AB performance was observed.Results/SignificanceThese results indicate that a failure to inhibit distracting information impairs AB recovery, possibly by interfering with target encoding in working memory - but does not affect AB magnitude. The absence of a relationship between individual sEBR and AB performance may be explained by task specifics.
BackgroundLipid-enriched diets and oxidative stress are risk factors for the development of atherosclerosis. The effects of the methanolic (ME) and cyclohexane (CHE) extracts of the Pistacia vera nut, often included in the Mediterranean diet, were studied in the rabbit model of atherosclerosis.Methods and resultsTwenty-four New Zealand White rabbits received atherogenic diet (Control Group), supplemented with ME (Group ME) or CHE (Group CHE) for 3 months. Previously, a GC-MS and a UHPLC LC-DAD-ESI(-)-HRMS/MS method were developed to investigate the extracts' chemical profiles. Blood samples at baseline and monthly determined lipid profile, lipid peroxidation and liver function. The aorta, myocardium and liver were examined histologically at 3 months.Groups ME and CHE had significantly higher HDL- and non-significantly lower LDL-cholesterol median % changes from baseline than the Control Group. Triacylglycerol was significantly higher in Group CHE vs. Control. MDA values were significantly lower in Group ME vs. Control and CHE. ALT and AST were significantly higher in Group CHE vs. Control. γ-GT was lower in Group ME vs. Control. Aortic intimal thickness was significantly less in Groups ME and CHE vs. Control; Group ME atherosclerotic lesions were significantly less extensive vs. Groups Control and CHE. Only Group CHE had significant liver fatty infiltration.ConclusionsDuring short-term administration concomitantly with atherogenic diet, both P. vera extracts were beneficial on HDL-, LDL-cholesterol and aortic intimal thickness. The ME additionally presented an antioxidant effect and significant decrease of aortic surface lesions. These results indicate that P. vera dietary inclusion, in particular its ME, is potentially beneficial in atherosclerosis management.
Current treatments for leishmaniasis are unsatisfactory due to their route of administration, toxicity and expense but, most importantly, to the developed resistance of Leishmania to first-line drugs. Therefore, the identification of new effective targeted drugs is an urgent need. Since many studies have shown that medicinal plants contain compounds active against protozoa we have undertaken a study aiming to determine the antileishmanial activity of the taxoid 10-deacetylbaccatin III, isolated from dried needles and small branches of the European yew tree (Taxus baccata). Interestingly, 10-deacetylbaccatin III was found to selectively inhibit the growth of L. DONOVANI intracellular amastigotes within J774 murine macrophages in vitro at nanomolar concentrations with an IC(50) value of 70 nM. Concentrations of 10-deacetylbaccatin III as high as 5 microM did not affect J774 murine macrophages whereas 20 nM of taxol, used as a control, was toxic to macrophages. The compound also inhibited the growth of L. donovani promastigotes but at higher concentrations with a maximum level of inhibition of 35 %. Taxol inhibited promastigote growth at micromolar concentrations. Comparison of the effect of 10-deacetylbaccatin III to that of taxol on cell cycle progression and cellular morphology showed that their mechanisms of action are different. The 10-deacetylbaccatin III-treated promastigotes were slightly arrested in the G2/M phase whereas taxol-treated cells were blocked in the G2/M phase. In addition 10-deacetylbaccatin III treatment, contrary to taxol, did not affect cellular morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.