This is probably the first paper which discusses likelihood inference for a random set using a germ-grain model, where the individual grains are unobservable, edge effects occur and other complications appear. We consider the case where the grains form a disc process modelled by a marked point process, where the germs are the centres and the marks are the associated radii of the discs. We propose to use a recent parametric class of interacting disc process models, where the minimal sufficient statistic depends on various geometric properties of the random set, and the density is specified with respect to a given marked Poisson model (i.e. a Boolean model). We show how edge effects and other complications can be handled by considering a certain conditional likelihood. Our methodology is illustrated by analysing Peter Diggle's heather data set, where we discuss the results of simulation-based maximum likelihood inference and the effect of specifying different reference Poisson models. Copyright (c) 2009 Board of the Foundation of the Scandinavian Journal of Statistics.
We study a flexible class of finite-disc process models with interaction between the discs. We let U denote the random set given by the union of discs, and use for the disc process an exponential family density with the canonical sufficient statistic depending only on geometric properties of U such as the area, perimeter, Euler-Poincaré characteristic, and the number of holes. This includes the quermass-interaction process and the continuum random-cluster model as special cases. Viewing our model as a connected component Markov point process, and thereby establishing local and spatial Markov properties, becomes useful for handling the problem of edge effects when only U is observed within a bounded observation window. The power tessellation and its dual graph become major tools when establishing inclusion-exclusion formulae, formulae for computing geometric characteristics of U, and stability properties of the underlying disc process density. Algorithms for constructing the power tessellation of U and for simulating the disc process are discussed, and the software is made public available.
In recent years random sets were recognized as a valuable tool in modelling different processes from fields like biology, biomedicine or material sciences. Nevertheless, the full potential of applications has not still been reached and one of the main problems in advancement is the usual inability to correctly differentiate between underlying processes generating real world realisations. This paper presents a measure of dissimilarity of stationary and isotropic random sets through a heuristic based on convex compact approximations, support functions and envelope tests. The choice is justified through simulation studies of common random models like Boolean and Quermass-interaction processes.
We study a flexible class of finite-disc process models with interaction between the discs. We let 𝒰 denote the random set given by the union of discs, and use for the disc process an exponential family density with the canonical sufficient statistic depending only on geometric properties of 𝒰 such as the area, perimeter, Euler-Poincaré characteristic, and the number of holes. This includes the quermass-interaction process and the continuum random-cluster model as special cases. Viewing our model as a connected component Markov point process, and thereby establishing local and spatial Markov properties, becomes useful for handling the problem of edge effects when only 𝒰 is observed within a bounded observation window. The power tessellation and its dual graph become major tools when establishing inclusion-exclusion formulae, formulae for computing geometric characteristics of 𝒰, and stability properties of the underlying disc process density. Algorithms for constructing the power tessellation of 𝒰 and for simulating the disc process are discussed, and the software is made public available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.