Clostridium beijerinckii NRRL B-598 is a sporulating, butanol and hydrogen producing strain that utilizes carbohydrates by the acetone-butanol-ethanol (ABE) fermentative pathway. The pathway consists of two metabolic phases, acidogenesis and solventogenesis, from which the latter one can be coupled with sporulation. Thorough transcriptomic profiling during a complete life cycle and both metabolic phases completed with flow cytometry, microscopy and a metabolites analysis helped to find out key genes involved in particular cellular events. The description of genes/operons that are closely involved in metabolism or the cell cycle is a necessary condition for metabolic engineering of the strain and will be valuable for all C. beijerinckii strains and other Clostridial species. The study focused on glucose transport and catabolism, hydrogen formation, metabolic stress response, binary fission, motility/chemotaxis and sporulation, which resulted in the composition of the unique image reflecting clostridial population changes. Surprisingly, the main change in expression of individual genes was coupled with the sporulation start and not with the transition from acidogenic to solventogenic metabolism. As expected, solvents formation started at pH decrease and the accumulation of butyric and acetic acids in the cultivation medium.
Background One of the main obstacles preventing solventogenic clostridia from achieving higher yields in biofuel production is the toxicity of produced solvents. Unfortunately, regulatory mechanisms responsible for the shock response are poorly described on the transcriptomic level. Although the strain Clostridium beijerinckii NRRL B-598, a promising butanol producer, has been studied under different conditions in the past, its transcriptional response to a shock caused by butanol in the cultivation medium remains unknown. Results In this paper, we present a transcriptional response of the strain during a butanol challenge, caused by the addition of butanol to the cultivation medium at the very end of the acidogenic phase, using RNA-Seq. We resequenced and reassembled the genome sequence of the strain and prepared novel genome and gene ontology annotation to provide the most accurate results. When compared to samples under standard cultivation conditions, samples gathered during butanol shock represented a well-distinguished group. Using reference samples gathered directly before the addition of butanol, we identified genes that were differentially expressed in butanol challenge samples. We determined clusters of 293 down-regulated and 301 up-regulated genes whose expression was affected by the cultivation conditions. Enriched term “RNA binding” among down-regulated genes corresponded to the downturn of translation and the cluster contained a group of small acid-soluble spore proteins. This explained phenotype of the culture that had not sporulated. On the other hand, up-regulated genes were characterized by the term “protein binding” which corresponded to activation of heat-shock proteins that were identified within this cluster. Conclusions We provided an overall transcriptional response of the strain C. beijerinckii NRRL B-598 to butanol shock, supplemented by auxiliary technologies, including high-pressure liquid chromatography and flow cytometry, to capture the corresponding phenotypic response. We identified genes whose regulation was affected by the addition of butanol to the cultivation medium and inferred related molecular functions that were significantly influenced. Additionally, using high-quality genome assembly and custom-made gene ontology annotation, we demonstrated that this settled terminology, widely used for the analysis of model organisms, could also be applied to non-model organisms and for research in the field of biofuels.
In-depth knowledge of cell metabolism and nutrient uptake mechanisms can lead to the development of a tool for improving acetone-butanol-ethanol (ABE) fermentation performance and help to overcome bottlenecks in the process, such as the high cost of substrates and low production rates. Over 300 genes potentially encoding transport of amino acids, metal ions, vitamins and carbohydrates were identified in the genome of the butanol-producing strain Clostridium beijerinckii NRRL B-598, based on similarity searches in protein function databases. Transcriptomic data of the genes were obtained during ABE fermentation by RNA-Seq experiments and covered acidogenesis, solventogenesis and sporulation. The physiological roles of the selected 81 actively expressed transport genes were established on the basis of their expression profiles at particular stages of ABE fermentation. This article describes how genes encoding the uptake of glucose, iron, riboflavin, glutamine, methionine and other nutrients take part in growth, production and stress responses of C. beijerinckii NRRL B-598. These data increase our knowledge of transport mechanisms in solventogenic Clostridium and may be used in the selection of individual genes for further research.
N-Butanol, a valuable solvent and potential fuel extender, can be produced via acetonebutanol-ethanol (ABE) fermentation. One of the main drawbacks of ABE fermentation is the high toxicity of butanol to producing cells, leading to cell membrane disruption, low culture viability and, consequently, low produced concentrations of butanol. The goal of this study was to obtain mutant strains of Clostridium beijerinckii NRRL B-598 with improved butanol tolerance using random chemical mutagenesis, describe changes in their phenotypes compared to the wild-type strain and reveal changes in the genome that explain improved tolerance or other phenotypic changes. Nine mutant strains with stable improved features were obtained by three different approaches and, for two of them, ethidium bromide (EB), a known substrate of efflux pumps, was used for either selection or as a mutagenic agent. It is the first utilization of this approach for the development of butanol-tolerant mutants of solventogenic clostridia, for which generally there is a lack of knowledge about butanol efflux or efflux mechanisms and their regulation. Mutant strains exhibited increase in butanol tolerance from 36% up to 127% and the greatest improvement was achieved for the strains for which EB was used as a mutagenic agent. Additionally, increased tolerance to other substrates of efflux pumps, EB and ethanol, was observed in all mutants and higher antibiotic tolerance in some of the strains. The complete genomes of mutant strains were sequenced and revealed that improved butanol tolerance can be attributed to mutations in genes encoding typical stress responses (chemotaxis, autolysis or changes in cell membrane structure), but, also, to mutations in genes X276_07980 and X276_24400, encoding efflux pump regulators. The latter observation confirms the importance of efflux in butanol stress response of the strain and offers new targets for rational strain engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.