Alarm signalling is of paramount importance to communication in all social insects. In termites, vibroacoustic and chemical alarm signalling are bound to operate synergistically but have never been studied simultaneously in a single species. Here, we inspected the functional significance of both communication channels in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae), confirming the hypothesis that these are not exclusive, but rather complementary processes. In natural situations, the alarm predominantly attracts soldiers, which actively search for the source of a disturbance. Laboratory testing revealed that the frontal gland of soldiers produces a rich mixture of terpenoid compounds including an alarm pheromone. Extensive testing led to identification of the alarm pheromone being composed of abundant monoterpene hydrocarbons (1S)-α-pinene and myrcene, along with a minor component, (E)-β-ocimene. The vibratory alarm signalling consists of vibratory movements evidenced as bursts; a series of beats produced predominantly by soldiers. Exposing termite groups to various mixtures containing the alarm pheromone (crushed soldier heads, frontal gland extracts, mixture of all monoterpenes, and the alarm pheromone mixture made of standards) resulted in significantly higher activity in the tested groups and also increased intensity of the vibratory alarm communication, with the responses clearly dose-dependent. Lower doses of the pheromone provoked higher numbers of vibratory signals compared to higher doses. Higher doses induced long-term running of all termites without stops necessary to perform vibratory behaviour. Surprisingly, even crushed worker heads led to low (but significant) increases in the alarm responses, suggesting that other unknown compound in the worker's head is perceived and answered by termites. Our results demonstrate the existence of different alarm levels in termites, with lower levels being communicated through vibratory signals, and higher levels causing general alarm or retreat being communicated through the alarm pheromone.
Termite nests are often secondarily inhabited by other termite species ( = inquilines) that cohabit with the host. To understand this association, we studied the trail-following behaviour in two Neotropical species, Constrictotermes cyphergaster (Termitidae: Nasutitermitinae) and its obligatory inquiline, Inquilinitermes microcerus (Termitidae: Termitinae). Using behavioural experiments and chemical analyses, we determined that the trail-following pheromone of C. cyphergaster is made of neocembrene and (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol. Although no specific compound was identified in I. microcerus, workers were able to follow the above compounds in behavioural bioassays. Interestingly, in choice tests, C. cyphergaster prefers conspecific over heterospecific trails while I. microcerus shows the converse behaviour. In no-choice tests with whole body extracts, C. cyphergaster showed no preference for, while I. microcerus clearly avoided heterospecific trails. This seems to agree with the hypothesis that trail-following pheromones may shape the cohabitation of C. cyphergaster and I. microcerus and reinforce the idea that their cohabitation is based on conflict-avoiding strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.