␣-Synuclein is central in Parkinson's disease pathogenesis. Although initially ␣-synuclein was considered a purely intracellular protein, recent data suggest that it can be detected in the plasma and CSF of humans and in the culture media of neuronal cells. To address a role of secreted ␣-synuclein in neuronal homeostasis, we have generated wild-type ␣-synuclein and -galactosidase inducible SH-SY5Y cells. Soluble oligomeric and monomeric species of ␣-synuclein are readily detected in the conditioned media (CM) of these cells at concentrations similar to those observed in human CSF. We have found that, in this model, ␣-synuclein is secreted by externalized vesicles in a calcium-dependent manner. Electron microscopy and liquid chromatography-mass spectrometry proteomic analysis demonstrate that these vesicles have the characteristic hallmarks of exosomes, secreted intraluminar vesicles of multivesicular bodies. Application of CM containing secreted ␣-synuclein causes cell death of recipient neuronal cells, which can be reversed after ␣-synuclein immunodepletion from the CM. High-and low-molecular-weight ␣-synuclein species, isolated from this CM, significantly decrease cell viability. Importantly, treatment of the CM with oligomer-interfering compounds before application rescues the recipient neuronal cells from the observed toxicity. Our results show for the first time that cell-produced ␣-synuclein is secreted via an exosomal, calcium-dependent mechanism and suggest that ␣-synuclein secretion serves to amplify and propagate Parkinson's diseaserelated pathology.
Significance
Converging evidence points to the build-up of phosphorylated α-synuclein (α-syn) at residue serine 129 (pS129) in Lewy body disease, suggesting its central role in the regulation of α-syn aggregation and neuronal degeneration. However, a comprehensive understanding of the role of α-syn phosphorylation at pS129 in α-synuclenopathies pathogenesis is still lacking. Herein, we study the phosphorylation incidence and its effect on α-syn aggregation propensity and cellular toxicity. Collectively, our data suggest that pS129 occurred subsequent to initial α-syn aggregation, lessened aggregation propensity, and attenuated cytotoxicity through diverse assays. Our findings highlight major implications for a better understanding of the role of a molecular modification on protein aggregation.
α-Synuclein (AS) plays a crucial role in Parkinson's disease pathogenesis. AS is normally secreted from neuronal cells and can thus exert paracrine effects. We have previously demonstrated that naturally secreted AS species, derived from SH-SY5Y cells inducibly overexpressing human wild type AS, can be toxic to recipient neuronal cells. In the current study, we show that application of secreted AS alters membrane fluidity and increases calcium (Ca2+) entry. This influx is reduced on pharmacological inhibition of voltage-operated Ca2+ channels. Although no change in free cytosolic Ca2+ levels is observed, a significantly increased mitochondrial Ca2+ sequestration is found in recipient cells. Application of voltage-operated Ca2+ channel blockers or Ca2+ chelators abolishes AS-mediated toxicity. AS-treated cells exhibit increased calpain activation, and calpain inhibition greatly alleviates the observed toxicity. Collectively, our data suggest that secreted AS exerts toxicity through engagement, at least in part, of the Ca2+ homeostatic machinery. Therefore, manipulating Ca2+ signaling pathways might represent a potential therapeutic strategy for Parkinson's disease.
The cross-sectional and longitudinal relationships between white matter hyperintensities and dementia in patients with Parkinson's disease: a retrospective analysis of 132 patients in a single center.
In experimental models, both in vivo and cellular, over-expression of Parkinson’s linked mutant leucine-rich repeat kinase 2 (LRRK2) is sufficient to induce neuronal death. While several cell death associated proteins have been linked to LRRK2, either as protein interactors or as putative substrates, characterization of the neuronal death cascade remains elusive. In this study, we have mapped for the first time the domain within LRRK2 that mediates the interaction with FADD, thereby activating the molecular machinery of the extrinsic death pathway. Using homology modeling and molecular docking approaches, we have identified a critical motif within the N-terminal armadillo repeat region of LRRK2. Moreover, we show that co-expression of fragments of LRRK2 that contain the FADD binding motif, or deletion of this motif itself, blocks the interaction with FADD, and is neuroprotective. We further demonstrate that downstream of FADD, the mitochondrial proteins Bid and Bax are recruited to the death cascade and are necessary for neuronal death. Our work identifies multiple novel points within neuronal death signaling pathways that could potentially be targeted by candidate therapeutic strategies and highlight how the extrinsic pathway can be activated intracellularly in a pathogenic context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.