The World Health Organization (WHO) classified COVID-19 as a global pandemic, with the situation ultimately requiring unprecedented measures to mitigate the effects on public health and the global economy. Although SARS-CoV-2 (the virus responsible for COVID-19) is primarily respiratory in nature, multiple studies confirmed its genetic material could be detected in the feces of infected individuals, thereby highlighting sewage as a potential indicator of community incidence or prevalence. Numerous wastewater surveillance studies subsequently confirmed detection of SARS-CoV-2 RNA in wastewater and wastewater-associated solids/sludge. However, the methods employed in early studies vary widely so it is unclear whether differences in reported concentrations reflect true differences in epidemiological conditions, or are instead driven by methodological artifacts. The current study aimed to compare the performance of virus recovery and detection methods, detect and quantify SARS-CoV-2 genetic material in two Southern Nevada sewersheds from March–May 2020, and better understand the potential link between COVID-19 incidence/prevalence and wastewater concentrations of SARS-CoV-2 RNA. SARS-CoV-2 surrogate recovery (0.34%–55%) and equivalent sample volume (0.1 mL–1 L) differed between methods and target water matrices, ultimately impacting method sensitivity and reported concentrations. Composite sampling of influent and primary effluent resulted in a ∼10-fold increase in concentration relative to corresponding grab primary effluent samples, presumably highlighting diurnal variability in SARS-CoV-2 signal. Detection and quantification of four SARS-CoV-2 genetic markers (up to ∼10 6 gene copies per liter), along with ratios of SARS-CoV-2 to pepper mild mottle virus (PMMoV), exhibited comparability with public health data for two sewersheds in an early phase of the pandemic. Finally, a wastewater model informed by fecal shedding rates highlighted the potential significance of new cases (i.e., incidence rather than prevalence) when interpreting wastewater surveillance data.
BackgroundWe sought to determine if the prevalence of antibiotic-resistant Escherichia coli differed across retail poultry products and among major production categories, including organic, “raised without antibiotics”, and conventional.ResultsWe collected all available brands of retail chicken and turkey—including conventional, “raised without antibiotic”, and organic products—every two weeks from January to December 2012. In total, E. coli was recovered from 91% of 546 turkey products tested and 88% of 1367 chicken products tested. The proportion of samples contaminated with E. coli was similar across all three production categories. Resistance prevalence varied by meat type and was highest among E. coli isolates from turkey for the majority of antibiotics tested. In general, production category had little effect on resistance prevalence among E. coli isolates from chicken, although resistance to gentamicin and multidrug resistance did vary. In contrast, resistance prevalence was significantly higher for 6 of the antibiotics tested—and multidrug resistance—among isolates from conventional turkey products when compared to those labelled organic or “raised without antibiotics”. E. coli isolates from chicken varied strongly in resistance prevalence among different brands within each production category.ConclusionThe high prevalence of resistance among E. coli isolates from conventionally-raised turkey meat suggests greater antimicrobial use in conventional turkey production as compared to “raised without antibiotics” and organic systems. However, among E. coli from chicken meat, resistance prevalence was more strongly linked to brand than to production category, which could be caused by brand-level differences during production and/or processing, including variations in antimicrobial use.Electronic supplementary materialThe online version of this article (10.1186/s12866-018-1322-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.