Hydrogen gas is a storable form of chemical energy that could complement intermittent renewable energy conversion. One of the main disadvantages of hydrogen gas arises from its low density, and therefore, efficient handling and storage methods are key factors that need to be addressed to realize a hydrogen-based economy. Storage systems based on liquids, in particular, formic acid and alcohols, are highly attractive hydrogen carriers as they can be made from CO or other renewable materials, they can be used in stationary power storage units such as hydrogen filling stations, and they can be used directly as transportation fuels. However, to bring about a paradigm change in our energy infrastructure, efficient catalytic processes that release the hydrogen from these molecules, as well as catalysts that regenerate these molecules from CO and hydrogen, are required. In this review, we describe the considerable progress that has been made in homogeneous catalysis for these critical reactions, namely, the hydrogenation of CO to formic acid and methanol and the reverse dehydrogenation reactions. The dehydrogenation of higher alcohols available from renewable feedstocks is also described. Key structural features of the catalysts are analyzed, as is the role of additives, which are required in many systems. Particular attention is paid to advances in sustainable catalytic processes, especially to additive-free processes and catalysts based on Earth-abundant metal ions. Mechanistic information is also presented, and it is hoped that this review not only provides an account of the state of the art in the field but also offers insights into how superior catalytic systems can be obtained in the future.
Carbon dioxide may constitute a source of chemicals and fuels if efficient and renewable processes are developed that directly utilize it as feedstock. Two of its reduction products are formic acid and methanol, which have also been proposed as liquid organic chemical carriers in sustainable hydrogen storage. Here we report that both the hydrogenation of carbon dioxide to formic acid and the disproportionation of formic acid into methanol can be realized at ambient temperature and in aqueous, acidic solution, with an iridium catalyst. The formic acid yield is maximized in water without additives, while acidification results in complete (98 %) and selective (96 %) formic acid disproportionation into methanol. These promising features in combination with the low reaction temperatures and the absence of organic solvents and additives are relevant for a sustainable hydrogen/methanol economy.
Production of methanol (MeOH) from CO 2 is strongly desired as a key chemical feedstock and a fuel. However, the conventional process requires elevated temperature and pressure, and high temperature restricts the productivity of MeOH due to equilibrium limitations between CO 2 and MeOH. This paper describes the efficient hydrogenation/disproportionation of formic acid (FA) to MeOH by using iridium catalysts with electronically tuned ligands and by optimizing reaction conditions. An iridium complex bearing 5,5′-dimethyl-2,2′bipyridine in FA hydrogenation achieved MeOH selectivity with H 2 of up to 47.1% for FA hydrogenation under 4.5 MPa of H 2 in the presence of H 2 SO 4 . The final concentration of MeOH of 3.9 M and a TON of 1314 were obtained in 12 M FA aqueous solution including 10 mol % of H 2 SO 4 at 60 °C under 5.2 MPa of H 2 . Even under atmospheric pressure without introduction of external hydrogen gas, the FA disproportionation under deuterated conditions produced MeOH with 15.4% selectivity. Furthermore, the isotope effect and NMR studies revealed mechanistic insight into the catalytic hydrogenation of FA to MeOH.
The selective dehydrogenation of aqueous solutions of HCOOH/HCOONa to H 2 and CO 2 gas mixtures has been investigated using RuCl 3 •3H 2 O as a homogeneous catalyst precursor in the presence of different monoaryl-biaryl or alkyl-biaryl phosphines and aryl diphosphines bearing sulfonated groups. All catalytic systems were used in water without any additives and proved to be active at 90 °C, giving high conversions and good TOF values. As an alternative Ru(II) metal precursor, the known dimer [Ru(η 6 -C 6 H 6 )Cl 2 ] 2 was also tested as in situ catalyst with selected phosphines as well as an isolated Ru(II)-catalyst with one of them. By using high-pressure NMR (HPNMR) techniques, indications on the nature of the active species involved in the catalytic cycles were obtained.
Methanol is produced from the formic acid disproportionation reaction with unprecedented yields under mild conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.